An approach to obtaining identities with binomial coefficients and orthogonal polynomials
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

A series of new combinatorial identities with binomial coefficients and orthogonal polynomials is obtained by using a unified approach. These identities contain Hermite polynomials, Legendre polynomials, Chebyshev polynomials of the first and second kind, Gegenbauer polynomials, and Krawtchouk polynomials.
Keywords: combinatorial identity, Hermite polynomials, Chebyshev polynomials, Gegenbauer polynomials
Mots-clés : binomial coefficients, orthogonal polynomials, Legendre polynomials, Krawtchouk polynomials
@article{INTO_2024_235_a2,
     author = {V. A. Voblyi},
     title = {An approach to obtaining identities with binomial coefficients and orthogonal polynomials},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {34--39},
     publisher = {mathdoc},
     volume = {235},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_235_a2/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - An approach to obtaining identities with binomial coefficients and orthogonal polynomials
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 34
EP  - 39
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_235_a2/
LA  - ru
ID  - INTO_2024_235_a2
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T An approach to obtaining identities with binomial coefficients and orthogonal polynomials
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 34-39
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_235_a2/
%G ru
%F INTO_2024_235_a2
V. A. Voblyi. An approach to obtaining identities with binomial coefficients and orthogonal polynomials. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXV", Voronezh, April 26-30, 2024, Part 1, Tome 235 (2024), pp. 34-39. http://geodesic.mathdoc.fr/item/INTO_2024_235_a2/

[1] Spravochnik po spetsialnym funktsiyam, ed. Abramovits M., Stigan I., Nauka, M., 1979

[2] Brychkov Yu. A., Spetsialnye funktsii, proizvodnye, integraly, ryady i drugie formuly, Nauka, M., 1983

[3] Voblyi V. A., “Ob odnom tozhdestve dlya mnogochlenov Kravchuka”, Mat. XX Mezhdunar. semin. «Kombinatornye konfiguratsii i ikh prilozheniya», KNTU, Kropivnitskii, 2018, 22–25

[4] Voblyi V. A., “O kombinatornom tozhdestve, svyazannom s perechisleniem grafov”, Mat. XXI Mezhdunar. semin. «Kombinatornye konfiguratsii i ikh prilozheniya», KNTU, Kropivnitskii, 2019, 30–31

[5] Voblyi V. A., “Dva kombinatornykh tozhdestva, svyazannykh s perechisleniem grafov”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 211 (2022), 11–14 | DOI

[6] Voblyi V. A., “Novye tozhdestva iz perechisleniya grafov”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 229 (2023), 33–36

[7] Gavrilov G. P., Sapozhenko A. A., Zadachi i uprazhneniya po diskretnoi matematike, Fizmatlit, M., 2009 | MR

[8] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[9] Grekhem A., Knut D., Patashnik O., Konkretnaya matematika, Mir, M., 1998 | MR

[10] Egorychev G. P., Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977

[11] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Mnogochleny Kravchuka i ikh primenenie v zadachakh kriptografii i teorii kodirovaniya”, Mat. vopr. kriptogr., 6:1 (2015), 33–56 | DOI | MR | Zbl

[12] Kombinatornyi analiz. Zadachi i uprazhneniya, ed. Rybnikov K. A., Nauka, M., 1982 | MR

[13] Leontev V. K., Izbrannye zadachi kombinatornogo analiza, Izd-vo MGTU im. N. E. Baumana, M., 2001

[14] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[15] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. T. 1. Elementarnye funktsii., Nauka, M., 1981 | MR

[16] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. T. 2. Spetsialnye funktsii., Nauka, M., 1983 | MR

[17] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. T. 3. Spetsialnye funktsii. Dopolnitelnye glavy., Nauka, M., 1986 | MR

[18] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR

[19] Charalambides C. A., Enumerative Combinatorics, CRC Press, Boca Raton, 2018 | MR

[20] Gould H. W., Combinatorial Identities, West Virginia University, Morgantown, 1972

[21] Kaucky J., Combinatoricke Identity, Veda, Bratislava, 1975

[22] Lovasz L., Combinatorial Problems and Exercises, Am. Math. Soc., Providence, Rhode Island, 2007 | MR

[23] Podesta R. A., New identities for binary Krawtchouk polynomials, binomial coefficients and Catalan numbers, arXiv: 1603.09156v2 [math.CO]

[24] Spivey M. Z., The Art of Proving Binomial Identities, CRC Press, Boca Raton, 2019 | MR | Zbl

[25] Tomescu J., Problems in Combinatorics and Graph Theory, Wiley, New York, 1986 | MR