On one class of exact solutions of the multidimensional nonlinear heat equation with a zero front
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 59-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of exact solutions of a multidimensional nonlinear heat equation with a source. The construction of these solutions leads to the solution of a family of second-order ordinary differential equations. If appropriate Cauchy conditions are specified, exact solutions can be interpreted as nontrivial solutions with zero front. An existence theorem is proved and a solution is constructed in the form of a converging power series. An approximate algorithm based on the collocation method of radial basis functions is proposed. Test calculations and numerical analysis of the solutions obtained are performed.
Keywords: nonlinear parabolic system, existence theorem, collocation method, radial basic functions, numerical analysis
Mots-clés : exact solution
@article{INTO_2024_234_a7,
     author = {A. L. Kazakov and L. F. Spevak},
     title = {On one class of exact solutions of the multidimensional nonlinear heat equation with a zero front},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a7/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - L. F. Spevak
TI  - On one class of exact solutions of the multidimensional nonlinear heat equation with a zero front
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 59
EP  - 66
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a7/
LA  - ru
ID  - INTO_2024_234_a7
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A L. F. Spevak
%T On one class of exact solutions of the multidimensional nonlinear heat equation with a zero front
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 59-66
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a7/
%G ru
%F INTO_2024_234_a7
A. L. Kazakov; L. F. Spevak. On one class of exact solutions of the multidimensional nonlinear heat equation with a zero front. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 59-66. http://geodesic.mathdoc.fr/item/INTO_2024_234_a7/

[1] Barenblatt G. I., Entov V. N., Ryzhik V. M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984

[2] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966

[3] Kazakov A. L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izv., 16 (2019), 1057–1068 | DOI | Zbl

[4] Kazakov A. L., Orlov S. S., “O nekotorykh tochnykh resheniyakh nelineinogo uravneniya teploprovodnosti”, Tr. In-ta mat. mekh. UrO RAN., 22:1 (2016), 112–123 | MR

[5] Kazakov A. L., Orlov S. S., Orlov S. S., “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Sib. mat. zh., 59:3 (2018), 544–560 | DOI | MR | Zbl

[6] Kazakov A. L., Nefedova O. A., Spevak L. F., “Reshenie zadach ob initsiirovanii teplovoi volny dlya nelineinogo uravneniya teploprovodnosti metodom granichnykh elementov”, Zh. vychisl. mat. mat. fiz., 16 (2019), 1057–1068 | DOI | Zbl

[7] Kazakov A. L., Nefedova O.A., Spevak L. F., Spevak L. F., “O chislennykh metodakh postroeniya etalonnykh reshenii dlya nelineinogo uravneniya teploprovodnosti s osobennostyu”, Diagn. Res. Mech. Mater. Struct., 2020, no. 5, 26–44 | DOI

[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[9] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987

[10] Sidorov A. F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001 | MR

[11] Buhmann M. D., Radial basis functions, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[12] Chen C. S.,Chen W., Fu Z. J., Recent Advances in Radial Basis Function Collocation Method, Springer, Berlin/Heidelberg, 2013 | DOI | MR

[13] Courant R., Hilbert D., Methods of Mathematical Physics. Vol. II: Partial Differential Equations, Interscience, New York, 2008 | MR

[14] Fornberg B., Flyer N., “Solving PDEs with radial basis functions”, Acta Num., 24 (2015), 215–258 | DOI | MR | Zbl

[15] Kansa E. J., “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations”, Comput. Math. Appl., 19:8-9 (1990), 147–161 | DOI | MR | Zbl

[16] Kazakov A. L, Spevak L. F., “Constructing exact and approximate diffusion wave solutions for a quasilinear parabolic equation with power nonlinearities”, Mathematics., 10 (2022), 1559 | DOI

[17] Vazquez H. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007 | DOI | MR