On some systems of partial differential equations with a small parameter in the principal part
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 50-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine systems of partial differential equations containing a small positive parameter in the principal part. We establish a relationship between solutions of the system with a small parameter and solutions of the limit system obtained if the parameter is equal to zero. We present classes of systems that preserve the properties of regularly perturbed problems under singular perturbations are admit constructing asymptotic solutions by methods of regular perturbation theory.
Keywords: small parameter, singularly perturbed equation, limit problem, Dirichlet problem, Cauchy problem
@article{INTO_2024_234_a6,
     author = {I. V. Zakharova and M. V. Falaleev},
     title = {On some systems of partial differential equations with a small parameter in the principal part},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--58},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a6/}
}
TY  - JOUR
AU  - I. V. Zakharova
AU  - M. V. Falaleev
TI  - On some systems of partial differential equations with a small parameter in the principal part
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 50
EP  - 58
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a6/
LA  - ru
ID  - INTO_2024_234_a6
ER  - 
%0 Journal Article
%A I. V. Zakharova
%A M. V. Falaleev
%T On some systems of partial differential equations with a small parameter in the principal part
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 50-58
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a6/
%G ru
%F INTO_2024_234_a6
I. V. Zakharova; M. V. Falaleev. On some systems of partial differential equations with a small parameter in the principal part. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 50-58. http://geodesic.mathdoc.fr/item/INTO_2024_234_a6/

[1] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR

[2] Dvait G. B., Tablitsa integralov i drugie matematicheskie formuly, Nauka, M., 1973

[3] Zakharova I. V., “O nekotorykh zadachakh dlya uravnenii s chastnymi proizvodnymi, soderzhaschikh malyi parametr v glavnoi chasti”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 183 (2020), 61–72 | DOI

[4] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970

[5] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957

[6] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, MGU, M., 2004 | MR

[7] Yanushauskas A. I., “O zavisyaschikh ot malogo parametra uravneniyakh s chastnymi proizvodnymi”, Sb. nauch. tr. Irkut. un-ta, 1990, 94–103