Support majorants and feedback minimum principles for discrete optimal control problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 43-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

Support conditions for two classes of problems are found: problems for which the discrete maximum principle is valid and for generalized solutions that are optimal in a convex problem with trajectories realized in the original formulation.
Keywords: necessary conditions, discrete minimum principle, feedback minimum principle, Hamilton–Jacobi inequality
@article{INTO_2024_234_a5,
     author = {V. A. Dykhta},
     title = {Support majorants and feedback minimum principles for discrete optimal control problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {43--49},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a5/}
}
TY  - JOUR
AU  - V. A. Dykhta
TI  - Support majorants and feedback minimum principles for discrete optimal control problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 43
EP  - 49
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a5/
LA  - ru
ID  - INTO_2024_234_a5
ER  - 
%0 Journal Article
%A V. A. Dykhta
%T Support majorants and feedback minimum principles for discrete optimal control problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 43-49
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a5/
%G ru
%F INTO_2024_234_a5
V. A. Dykhta. Support majorants and feedback minimum principles for discrete optimal control problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 43-49. http://geodesic.mathdoc.fr/item/INTO_2024_234_a5/

[1] Gabasov R., Kirillova F. M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, Moskva, 1971

[2] Dykhta V. A., “O mnozhestve neobkhodimykh uslovii optimalnosti s pozitsionnymi upravleniyami, porozhdennom slabo ubyvayuschimi resheniyami neravenstva Gamiltona"– Yakobi spuska v zadachakh optimalnogo upravleniya”, Tr. In-ta mat. mekh. UrO RAN., 28:3 (2022), 83–93 | MR

[3] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR

[4] Dykhta V. A., Sorokin S., “Feedback minimum principle for optimal control problems in discrete-time systems and its applications”, Lect. Notes Comp. Sci., 11548 (2019), 449–460 | DOI | MR | Zbl