On asymptotics of solution of nonlinear difference equation of convolution type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 21-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear difference equations appear in many problems of probability theory, computer science, and combinatorics. In this paper, a nonlinear difference equation of the convolution type with parameters is considered. Asymptotics of solutions of such equations are used for the enumeration of labeled connected graphs. To obtain the asymptotics, we apply Bender's theorem for the coefficients of formal power series.
Keywords: difference equation, nonlinearity, asymptotics, labeled graph, enumeration
Mots-clés : convolution
@article{INTO_2024_234_a2,
     author = {V. A. Voblyi},
     title = {On asymptotics of solution of nonlinear difference equation of convolution type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {21--26},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a2/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - On asymptotics of solution of nonlinear difference equation of convolution type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 21
EP  - 26
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a2/
LA  - ru
ID  - INTO_2024_234_a2
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T On asymptotics of solution of nonlinear difference equation of convolution type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 21-26
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a2/
%G ru
%F INTO_2024_234_a2
V. A. Voblyi. On asymptotics of solution of nonlinear difference equation of convolution type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 21-26. http://geodesic.mathdoc.fr/item/INTO_2024_234_a2/

[1] Bagaev G. N., Dmitriev E. F., “Perechislenie svyaznykh otmechennykh dvudolnykh grafov”, Dokl. AN BSSR., 28:12 (1984), 1061–1063 | MR | Zbl

[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 1, Nauka, M., 1965 | MR

[3] Voblyi V. A., “O koeffitsientakh Raita i Stepanova—Raita”, Mat. zametki., 42:6 (1987), 854–862 | MR

[4] Voblyi V. A., “O perechislenii pomechennykh svyaznykh gomeomorfno nesvodimykh grafov”, Mat. zametki., 49:3 (1991), 12–22 | MR | Zbl

[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976

[6] Sleiter L. Dzh., Vyrozhdennye gipergeometricheskie funktsii, VTs AN SSSR, M., 1966

[7] Stepanov V. E., Neskolko teorem otnositelno sluchainykh grafov, Veroyatnostnye metody v diskretnoi matematike, Petrozavodsk, 1983, 90–92

[8] Bender E. A., “An asymptotic expansion for the coefficients of some formal power series”, J. London Math. Soc. (2)., 49 (1975), 451–458 | DOI | MR

[9] Bender E. A., “Asymptotic of some convolutional recurrences”, Electron. J. Combin., 17 (2010), R1 | DOI | MR | Zbl

[10] Chern H. H. et al., “Psi-series method for equality of random trees and quadratic convolution recurrences”, Random Struct. Algorithms., 44:1 (2014), 67–108 | DOI | MR | Zbl

[11] Flajolet P., Poblete P., Viola A., “On the analysis of linear probing hashing”, Algorithmica., 22 (1998), 490–515 | DOI | MR | Zbl

[12] Flajolet P., Louchard G., “Analytic variations on the Airy distribution”, Algorithmica., 31 (2001), 337–358 | DOI | MR

[13] Janson S., Knuth D. E., Luczak T., Pittel B., “The birth of the giant component”, Random Struct. Algorithms., 4:2 (1993), 233–358 | DOI | MR | Zbl

[14] Janson S., “Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas”, Probab. Surv., 4 (2007), 80–145 | DOI | MR | Zbl

[15] Olver F. W., Lozier D., Boisvert R. F., Clark C. W., NIST Handbook of Mathematical Functions, Cambridge Univ. Press, New York, 2010 | MR | Zbl

[16] Stein P. R., Everett C. J., “On quadratic recurrence rule of Faltung type”, J. Comb. Inf. Syst. Sci., 3 (1978), 1–10 | MR | Zbl

[17] Wright E. M., “A quadratic recurrence of Faltung type”, Math. Proc. Cambridge Phil. Soc., 88 (1980), 193–197 | DOI | MR | Zbl

[18] Wright E. M., “The number of connected sparsely edged graphs, III”, J. Graph Theory., 4 (1980), 393–407 | DOI | MR | Zbl

[19] Wright E. M., “Enumeration of smooth labelled graphs”, Proc. Roy. Soc. Edinburgh., A91 (1981), 205–212 | MR