Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_234_a2, author = {V. A. Voblyi}, title = {On asymptotics of solution of nonlinear difference equation of convolution type}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {21--26}, publisher = {mathdoc}, volume = {234}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a2/} }
TY - JOUR AU - V. A. Voblyi TI - On asymptotics of solution of nonlinear difference equation of convolution type JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 21 EP - 26 VL - 234 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_234_a2/ LA - ru ID - INTO_2024_234_a2 ER -
%0 Journal Article %A V. A. Voblyi %T On asymptotics of solution of nonlinear difference equation of convolution type %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 21-26 %V 234 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_234_a2/ %G ru %F INTO_2024_234_a2
V. A. Voblyi. On asymptotics of solution of nonlinear difference equation of convolution type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 21-26. http://geodesic.mathdoc.fr/item/INTO_2024_234_a2/
[1] Bagaev G. N., Dmitriev E. F., “Perechislenie svyaznykh otmechennykh dvudolnykh grafov”, Dokl. AN BSSR., 28:12 (1984), 1061–1063 | MR | Zbl
[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 1, Nauka, M., 1965 | MR
[3] Voblyi V. A., “O koeffitsientakh Raita i Stepanova—Raita”, Mat. zametki., 42:6 (1987), 854–862 | MR
[4] Voblyi V. A., “O perechislenii pomechennykh svyaznykh gomeomorfno nesvodimykh grafov”, Mat. zametki., 49:3 (1991), 12–22 | MR | Zbl
[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976
[6] Sleiter L. Dzh., Vyrozhdennye gipergeometricheskie funktsii, VTs AN SSSR, M., 1966
[7] Stepanov V. E., Neskolko teorem otnositelno sluchainykh grafov, Veroyatnostnye metody v diskretnoi matematike, Petrozavodsk, 1983, 90–92
[8] Bender E. A., “An asymptotic expansion for the coefficients of some formal power series”, J. London Math. Soc. (2)., 49 (1975), 451–458 | DOI | MR
[9] Bender E. A., “Asymptotic of some convolutional recurrences”, Electron. J. Combin., 17 (2010), R1 | DOI | MR | Zbl
[10] Chern H. H. et al., “Psi-series method for equality of random trees and quadratic convolution recurrences”, Random Struct. Algorithms., 44:1 (2014), 67–108 | DOI | MR | Zbl
[11] Flajolet P., Poblete P., Viola A., “On the analysis of linear probing hashing”, Algorithmica., 22 (1998), 490–515 | DOI | MR | Zbl
[12] Flajolet P., Louchard G., “Analytic variations on the Airy distribution”, Algorithmica., 31 (2001), 337–358 | DOI | MR
[13] Janson S., Knuth D. E., Luczak T., Pittel B., “The birth of the giant component”, Random Struct. Algorithms., 4:2 (1993), 233–358 | DOI | MR | Zbl
[14] Janson S., “Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas”, Probab. Surv., 4 (2007), 80–145 | DOI | MR | Zbl
[15] Olver F. W., Lozier D., Boisvert R. F., Clark C. W., NIST Handbook of Mathematical Functions, Cambridge Univ. Press, New York, 2010 | MR | Zbl
[16] Stein P. R., Everett C. J., “On quadratic recurrence rule of Faltung type”, J. Comb. Inf. Syst. Sci., 3 (1978), 1–10 | MR | Zbl
[17] Wright E. M., “A quadratic recurrence of Faltung type”, Math. Proc. Cambridge Phil. Soc., 88 (1980), 193–197 | DOI | MR | Zbl
[18] Wright E. M., “The number of connected sparsely edged graphs, III”, J. Graph Theory., 4 (1980), 393–407 | DOI | MR | Zbl
[19] Wright E. M., “Enumeration of smooth labelled graphs”, Proc. Roy. Soc. Edinburgh., A91 (1981), 205–212 | MR