An approach to calculating degenerate extremal controls based on fixed point problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 118-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class of optimal control problems linear with respect to the control, an approach to calculating degenerate controls that satisfy the maximum principle, is proposed. This approach is based on new optimality conditions in the form of fixed point problems that are equivalent to the well-known conditions of the maximum principle. New forms of conditions for the maximum principle make it possible to construct effective methods for searching for degenerate controls. The efficiency of the approach proposed is illustrated using model examples.
Keywords: linearly controlled system, maximum principle, fixed point problem, degenerate controls, iterative methods
@article{INTO_2024_234_a14,
     author = {A. S. Buldaev and I. D. Kazmin},
     title = {An approach to calculating degenerate extremal controls based on fixed point problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {118--132},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a14/}
}
TY  - JOUR
AU  - A. S. Buldaev
AU  - I. D. Kazmin
TI  - An approach to calculating degenerate extremal controls based on fixed point problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 118
EP  - 132
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a14/
LA  - ru
ID  - INTO_2024_234_a14
ER  - 
%0 Journal Article
%A A. S. Buldaev
%A I. D. Kazmin
%T An approach to calculating degenerate extremal controls based on fixed point problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 118-132
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a14/
%G ru
%F INTO_2024_234_a14
A. S. Buldaev; I. D. Kazmin. An approach to calculating degenerate extremal controls based on fixed point problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 118-132. http://geodesic.mathdoc.fr/item/INTO_2024_234_a14/

[1] Bartenev O. V., Fortran dlya professionalov. Matematicheskaya biblioteka IMSL, Dialog-MIFI, M., 2001

[2] Buldaev A. S., “Operatornye uravneniya i algoritmy printsipa maksimuma v zadachakh optimalnogo upravleniya”, Vestn. Buryat. un-ta. Mat. Inform., 2020, no. 1, 35–53 | DOI

[3] Buldaev A. S., Kazmin I. D., “Operatornye metody poiska ekstremalnykh upravlenii v lineino-kvadratichnykh zadachakh optimalnogo upravleniya”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 224 (2023), 19–27 | DOI

[4] Vasilev O. V., Lektsii po metodam optimizatsii, Izd-vo IGU, Irkutsk, 1994 | MR

[5] Gurman V. I., Vyrozhdennye zadachi optimalnogo upravleniya, Nauka, M., 1977

[6] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[7] Srochko V. A, “Konechnomernaya approksimatsiya upravlenii v zadachakh optimizatsii lineinykh sistem”, Vestn. Buryat. un-ta. Mat. Inform., 2020, no. 3, 19–31 | DOI