Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_234_a13, author = {S. G. Bulanov}, title = {Lyapunov stability criteria for systems of ordinary differential equations in multiplicative and additive forms}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {108--117}, publisher = {mathdoc}, volume = {234}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a13/} }
TY - JOUR AU - S. G. Bulanov TI - Lyapunov stability criteria for systems of ordinary differential equations in multiplicative and additive forms JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 108 EP - 117 VL - 234 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_234_a13/ LA - ru ID - INTO_2024_234_a13 ER -
%0 Journal Article %A S. G. Bulanov %T Lyapunov stability criteria for systems of ordinary differential equations in multiplicative and additive forms %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 108-117 %V 234 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_234_a13/ %G ru %F INTO_2024_234_a13
S. G. Bulanov. Lyapunov stability criteria for systems of ordinary differential equations in multiplicative and additive forms. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 108-117. http://geodesic.mathdoc.fr/item/INTO_2024_234_a13/
[1] Bulanov S. G., “Neobkhodimye i dostatochnye kriterii ustoichivosti po Lyapunovu sistem obyknovennykh differentsialnykh uravnenii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 224 (2023), 10–18 | DOI
[2] Bulanov S. G., “Kriterii ustoichivosti sistem obyknovennykh differentsialnykh uravnenii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 225 (2023), 28–37 | DOI
[3] Grigoryan G. A., “Kriterii ustoichivosti sistem dvukh lineinykh obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Mat. zametki., 103:6 (2022), 831–840 | DOI
[4] Demidovich D. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[5] Druzhinina O. V., Sedova N. O., “Analiz ustoichivosti i stabilizatsii nelineinykh kaskadnykh sistem s zapazdyvaniem v terminakh lineinykh matrichnykh neravenstv”, Izv. RAN. Teor. sist. upravl., 1 (2017), 21–35 | DOI | Zbl
[6] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971
[7] Polyak B.T., Khlebnikov M.V., Rapoport L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya, LENAND, M., 2019
[8] Romm Ya. E., “Ob usloviyakh ustoichivosti s obratnoi proportsiei nachalnym znacheniyam reshenii sistem obyknovennykh differentsialnykh uravnenii”, Sovr. naukoemkie tekhnol., 9 (2023), 31–60 | DOI
[9] Romm Ya. E., Bulanov S. G., “Chislennoe modelirovanie ustoichivosti po Lyapunovu”, Sovr. naukoemkie tekhnol., 7 (2021), 42-–60 | DOI
[10] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964 | MR
[11] Elaiw A. M., Shflot A. S., Hobiny A. D., “Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model”, AIMS Math., 8:3 (2022), 6136–-6166 | DOI | MR
[12] Xiao-Lin L., Yao-Lin J., “Numerical algorithm for constructing Lyapunov functions of polynomial differential systems”, Appl. Math. Comput., 29:1 (2009), 247–-262 | MR | Zbl
[13] Xinna M., Hongwei F., Maryam A., Hassan S., “Dynamical analysis and boundedness for a generalized chaotic Lorenz model”, AIMS Math., 8:8 (2023), 19719-–19742 | DOI | MR
[14] Zhaolu T., Chuanqing G., “A numerical algorithm for Lyapunov equations”, Appl. Math. Comput., 202:1 (2008), 44-–53 | DOI | MR | Zbl