Lyapunov stability criteria for systems of ordinary differential equations in multiplicative and additive forms
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 108-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various Lyapunov stability criteria for systems of ordinary differential equations are presented in the form of necessary and sufficient conditions. The criteria are obtained under the conditions of existence and continuity of the solution on the semi-axis, continuity of the right part of the system and its continuous differentiability on the semi-axis. The criteria are constructed on the basis of recurrent transformations of difference schemes of numerical integration with a residual term at each step. The multiplicative and additive form of the criteria entails the possibility to computerize the stability analysis and perform it in real time.
Keywords: Lyapunov stability, computer stability analysis, numerical modeling of stability
@article{INTO_2024_234_a13,
     author = {S. G. Bulanov},
     title = {Lyapunov stability criteria for systems of ordinary differential equations in multiplicative and additive forms},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {108--117},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a13/}
}
TY  - JOUR
AU  - S. G. Bulanov
TI  - Lyapunov stability criteria for systems of ordinary differential equations in multiplicative and additive forms
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 108
EP  - 117
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a13/
LA  - ru
ID  - INTO_2024_234_a13
ER  - 
%0 Journal Article
%A S. G. Bulanov
%T Lyapunov stability criteria for systems of ordinary differential equations in multiplicative and additive forms
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 108-117
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a13/
%G ru
%F INTO_2024_234_a13
S. G. Bulanov. Lyapunov stability criteria for systems of ordinary differential equations in multiplicative and additive forms. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 108-117. http://geodesic.mathdoc.fr/item/INTO_2024_234_a13/

[1] Bulanov S. G., “Neobkhodimye i dostatochnye kriterii ustoichivosti po Lyapunovu sistem obyknovennykh differentsialnykh uravnenii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 224 (2023), 10–18 | DOI

[2] Bulanov S. G., “Kriterii ustoichivosti sistem obyknovennykh differentsialnykh uravnenii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 225 (2023), 28–37 | DOI

[3] Grigoryan G. A., “Kriterii ustoichivosti sistem dvukh lineinykh obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Mat. zametki., 103:6 (2022), 831–840 | DOI

[4] Demidovich D. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[5] Druzhinina O. V., Sedova N. O., “Analiz ustoichivosti i stabilizatsii nelineinykh kaskadnykh sistem s zapazdyvaniem v terminakh lineinykh matrichnykh neravenstv”, Izv. RAN. Teor. sist. upravl., 1 (2017), 21–35 | DOI | Zbl

[6] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971

[7] Polyak B.T., Khlebnikov M.V., Rapoport L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya, LENAND, M., 2019

[8] Romm Ya. E., “Ob usloviyakh ustoichivosti s obratnoi proportsiei nachalnym znacheniyam reshenii sistem obyknovennykh differentsialnykh uravnenii”, Sovr. naukoemkie tekhnol., 9 (2023), 31–60 | DOI

[9] Romm Ya. E., Bulanov S. G., “Chislennoe modelirovanie ustoichivosti po Lyapunovu”, Sovr. naukoemkie tekhnol., 7 (2021), 42-–60 | DOI

[10] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964 | MR

[11] Elaiw A. M., Shflot A. S., Hobiny A. D., “Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model”, AIMS Math., 8:3 (2022), 6136–-6166 | DOI | MR

[12] Xiao-Lin L., Yao-Lin J., “Numerical algorithm for constructing Lyapunov functions of polynomial differential systems”, Appl. Math. Comput., 29:1 (2009), 247–-262 | MR | Zbl

[13] Xinna M., Hongwei F., Maryam A., Hassan S., “Dynamical analysis and boundedness for a generalized chaotic Lorenz model”, AIMS Math., 8:8 (2023), 19719-–19742 | DOI | MR

[14] Zhaolu T., Chuanqing G., “A numerical algorithm for Lyapunov equations”, Appl. Math. Comput., 202:1 (2008), 44-–53 | DOI | MR | Zbl