The optimal control problem of the thermal effect of a laser beam on a two-layer biomaterial
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 11-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a constructive approach to constructing a function for optimal control of the thermal effect of a laser beam on a two-layer biomaterial. Under the thermal influence constructed, the distribution of the temperature state of a two-layer biomaterial transfers from a given initial state at a certain time interval into a given final state and minimizes the value of the quality criterion. The proposed approach is based on the method of variable separation and methods of the theory of optimal control of dynamic systems.
Keywords: two-layer biological material, thermal effect, laser beam, temperature state, optimal boundary control, method of variable separation
@article{INTO_2024_234_a1,
     author = {V. R. Barseghyan and S. V. Solodusha},
     title = {The optimal control problem of the thermal effect of a laser beam on a two-layer biomaterial},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a1/}
}
TY  - JOUR
AU  - V. R. Barseghyan
AU  - S. V. Solodusha
TI  - The optimal control problem of the thermal effect of a laser beam on a two-layer biomaterial
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 11
EP  - 20
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a1/
LA  - ru
ID  - INTO_2024_234_a1
ER  - 
%0 Journal Article
%A V. R. Barseghyan
%A S. V. Solodusha
%T The optimal control problem of the thermal effect of a laser beam on a two-layer biomaterial
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 11-20
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a1/
%G ru
%F INTO_2024_234_a1
V. R. Barseghyan; S. V. Solodusha. The optimal control problem of the thermal effect of a laser beam on a two-layer biomaterial. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 11-20. http://geodesic.mathdoc.fr/item/INTO_2024_234_a1/

[1] Barsegyan V. R., Barsegyan T. V., “Ob odnom podkhode k resheniyu zadach upravleniya dinamicheskimi sistemami s nerazdelennymi mnogotochechnymi promezhutochnymi usloviyami”, Avtomat. telemekh., 2015, no. 4, 3–15 | MR | Zbl

[2] Barsegyan V. R., “Optimalnoe granichnoe upravlenie smescheniem na dvukh kontsakh pri kolebanii sterzhnya, sostoyaschego iz dvukh uchastkov raznoi plotnosti i uprugosti”, Differ. uravn. protsessy upravl., 2022, no. 2, 41–54 | Zbl

[3] Barsegyan V. R., “Optimalnoe granichnoe upravlenie raspredelennoi neodnorodnoi kolebatelnoi sistemoi s zadannymi sostoyaniyami v promezhutochnye momenty vremeni”, Zh. vychisl. mat. mat. fiz., 63:1 (2023), 74–84 | DOI

[4] Barsegyan V. R., “Zadacha granichnogo upravleniya smescheniem na dvukh kontsakh protsessom kolebaniya sterzhnya, sostoyaschego iz dvukh uchastkov raznoi plotnosti i uprugosti”, Izv. RAN. Makh. tv. tela., 2023, no. 2, 125–135 | Zbl

[5] Belozerov L. G., Kireev V. A., Kompozitnye obolochki pri silovykh i teplovykh vozdeistviyakh, Fizmatlit, M., 2003

[6] Elagin V. V., Shakhova M. A., Karabut M. M., Kuznetsova D. S., Bredikhin V. I., Prodanets N. N., Snopova L. B., Baskina O. S., Shakhov A. V., Kamenskii V. A., “Otsenka rezhuschikh svoistv lazernogo skalpelya, osnaschennogo silno pogloschayuschim pokrytiem opticheskogo volokna”, Sovr. tekhnol. v meditsine., 7:3 (2015), 55–60

[7] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975

[8] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[9] Malaya Yu. A., Gubin A. I., “Matematicheskoe modelirovanie teplovykh protsessov pri lazernoi obrabotke materialov na osnove nelineinogo giperbolicheskogo uravneniya teploprovodnosti”, Tekhn. teplofiz. prom. teploenerg., 2011, no. 3, 72–85

[10] Megel Yu. E., Levkin D. A., “Matematicheskaya model teplovogo nagreva mnogosloinogo mikrobiologicheskogo ob'ekta”, Vost.-Evr. zh. peredovykh tekhnol., 57:3/4 (2012), 4–7

[11] Pyatkov S. G., “Nekotorye obratnye zadachi dlya parabolicheskikh uravnenii”, Fundam. prikl. mat., 12:4 (2006), 187–202

[12] Svet E. V., “Nestatsionarnaya zadacha teploprovodnosti v trekhmernoi postanovke dlya mnogosloinykh plastin slozhnoi formy”, Visn. NTU «KhPI»., 2013, no. 63 (1036), 4–7 | Zbl

[13] Skobelkin O. K., Lazery v khirurgii, Meditsina, M., 1989

[14] Shangina O. R., Gainutdinova R. D., “DVzaimodeistvie lazernogo izlucheniya s biologicheskimi tkanyami”, Prakt. maditsina., 17:1 (2019), 24–27

[15] Shupikov A. N., Buzko Ya. P., Smetankina N. V., Ugrimov S. V., Nestatsionarnye kolebaniya mnogosloinykh plastin i obolochek i ikh optimizatsiya, Izd. KhNEU, Kharkov, 2004

[16] Barsegyan V. R., “The problem of control of rod heating process with nonseparated conditions at intermediate moments of time”, Arch. Control Sci., 31:3 (2021), 481–-493 | MR | Zbl

[17] Barsegyan V. R., “Control of stage by stage changing linear dynamic systems”, Yugoslav. J. Oper. Res., 22:1 (2012), 31–-39 | DOI | MR | Zbl

[18] Barsegyan V. R., “On the controllability and observability of linear dynamic systems with variable structure”, 2016 Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conf.) (Moscow, Russia, June 1-3, 2016), 2016, 1–4

[19] Barsegyan V. R., Solodusha S. V., “On the optimal control problem for vibrations of the rod/string consisting of two non-homogeneous sections with the condition at an intermediate time”, Mathematics., 23:10 (2022), 4444 | MR

[20] Barsegyan V. R., Solodusha S. V., “On one boundary control problem of string vibrations with given velocity of points at an intermediate moment of time”, J. Phys. Conf. Ser., 1847 (2021), 012016 | MR

[21] Barsegyan V. R., Solodusha S. V., “Control of string vibrations by displacement of one end with the other end fixed, given the deflection Form at an intermediate moment of time”, Axioms., 11:4 (2022), 157 | MR

[22] Kantor B. Y., Smetankina N. V., Shupikov A. N., “Analysis of non-stationary temperature fields in laminated strips and plates”, Int. J. Solids Struct., 38:4 (2001), 187–202

[23] Yamaoka N., Sugie J., “Multilayer structures of second-order linear differential equations of Euler type and their application to nonlinear oscillations”, Ukr. Math. J., 58:12 (2006), 72–85 | DOI | MR