On a discrete two-parameter fractional control problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a fractional difference analog of an optimal control problem occupying an intermediate position between problems with lumped and distributed parameters and obtain various first-order optimality necessary conditions.
Keywords: two-parameter discrete problem, admissible control, two-parameter fractional system, optimal control
@article{INTO_2024_234_a0,
     author = {S. T. Aliyeva and K. B. Mansimov},
     title = {On a discrete two-parameter fractional control problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {234},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_234_a0/}
}
TY  - JOUR
AU  - S. T. Aliyeva
AU  - K. B. Mansimov
TI  - On a discrete two-parameter fractional control problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 3
EP  - 10
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_234_a0/
LA  - ru
ID  - INTO_2024_234_a0
ER  - 
%0 Journal Article
%A S. T. Aliyeva
%A K. B. Mansimov
%T On a discrete two-parameter fractional control problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 3-10
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_234_a0/
%G ru
%F INTO_2024_234_a0
S. T. Aliyeva; K. B. Mansimov. On a discrete two-parameter fractional control problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 5th International Conference "Dynamical Systems and Computer Science: Theory and Applications" (DYSC 2023). Irkutsk, September 18-23, 2023, Tome 234 (2024), pp. 3-10. http://geodesic.mathdoc.fr/item/INTO_2024_234_a0/

[10] Alieva S. T., “Printsip maksimuma Pontryagina dlya nelineinykh raznostnykh uravnenii drobnogo poryadka”, Vestn. Tomsk. gos. un-ta. Upravl. vychisl. tekhn., 54 (2021), 4–11

[11] Gabasov R., Kirillova F. M., Optimizatsiya lineinykh sistem, Izd-vo Belorus. gos. un-ta, Minsk, 1973 | MR

[12] Gabasov R., Kirillova F. M., Metody optimizatsii, Izd-vo Belorus. gos. un-ta, Minsk, 1981 | MR

[13] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka, i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[14] Mansimov K. B., Diskretnye sistemy, Izd-vo Bakinsk. gos. un-ta, Baku, 2013

[15] Moskalenko A. I., “Ob odnom klasse zadach optimalnogo regulirovaniya”, Zh. vychisl. mat. mat. fiz., 9:1 (1969), 68–95 | Zbl

[16] Moskalenko A. I., Diss. na soisk. uch. step. kand. fiz. mat. nauk, 1971

[17] Bastos N. R. O., Ferreira R. A. C., Torres D. F. M., “Necessary optimality conditions for fractional difference problems of the calculus of variations”, Discret. Contin. Dynam. Syst., 29:2 (2011), 417–437 | DOI | MR | Zbl

[18] Christopher G., Peterson A. C., Discrete Fractional Calculus, Springer, 2015 | MR | Zbl

[19] Feckan M., Wang J., Pospisil M., Fractional-Order Equations and Inclusions, De Gruyter, Berlin, 2017 | Zbl

[20] Jagan Mohan J., Deekshitulu G. V. S. R., “Fractional order difference equations”, Int. J. Differ. Equations., 2012, 780619 | MR | Zbl

[21] Miller K., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR | Zbl