Completeness of exponential systemsin function spaces in terms of area
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 107-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish completeness conditions for exponential systems in spaces of functions that are continuous on a compact set with connected complement and holomorphic inside this compact set, in spaces of holomorphic functions in a bounded simply connected domain in terms of the Euclidean area of the convex hull of this compact set or a domain and in terms of some special characteristics or distribution densities of the exponents of the exponential system.
Keywords: completeness, exponential system, Euclidean area, convex hull, support function, entire function of exponential type, root distribution
@article{INTO_2024_233_a9,
     author = {B. N. Khabibullin and E. G. Kudasheva},
     title = {Completeness of exponential systemsin function spaces in terms of area},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {107--117},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a9/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - E. G. Kudasheva
TI  - Completeness of exponential systemsin function spaces in terms of area
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 107
EP  - 117
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a9/
LA  - ru
ID  - INTO_2024_233_a9
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A E. G. Kudasheva
%T Completeness of exponential systemsin function spaces in terms of area
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 107-117
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a9/
%G ru
%F INTO_2024_233_a9
B. N. Khabibullin; E. G. Kudasheva. Completeness of exponential systemsin function spaces in terms of area. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 107-117. http://geodesic.mathdoc.fr/item/INTO_2024_233_a9/

[1] Bonnezen T., Fenkhel V., Teoriya vypuklykh tel, Fazis, M., 2002

[2] Grishin A. F., Malyutin K. G., Trigonometricheski vypuklye funktsii, Yugo-Zapadnyi gos. un-t, Kursk, 2015

[3] Gromov V. P., “O polnote sistemy znachenii golomorfnoi vektor-funktsii v prostranstve Freshe”, Mat. zametki., 73:6 (2003), 827–840 | DOI | Zbl

[4] Karimov M. R., Khabibullin B. N., “Sovpadenie nekotorykh plotnostei raspredeleniya mnozhestv i polnota sistem tselykh funktsii”, Tr. Mezhdunar. konf. «Kompleksnyi analiz, differentsialnye uravneniya i smezhnye voprosy». III. Analiz i differentsialnye uravneniya, ed. Merzlyakov S. G., 2000, In-t mat. s VTs UNTs RAN, Ufa, 2000, 29–34

[5] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Fizmatgiz, M., 1956

[6] Leontev A. F., Ryady eksponent, Nauka, M., 1978 | MR

[7] Menshikova E. B., “Integralnye formuly tipa Karlemana i Levina B. Ya. dlya meromorfnykh i subgarmonicheskikh funktsii”, Izv. vuzov. Mat., 2022, no. 6, 37–53 | MR | Zbl

[8] Polia G., Segë G., Zadachi i teoremy iz analiza, Nauka, M., 1978 | MR

[9] Salimova A. E., Khabibullin B. N., “Rost subgarmonicheskikh funktsii vdol pryamoi i raspredelenie ikh mer Rissa”, Ufim. mat. zh., 12:2 (2020), 35–48 | MR | Zbl

[10] Salimova A. E., Khabibullin B. N., “Rost tselykh funktsii eksponentsialnogo tipa i kharakteristiki raspredelenii tochek vdol pryamoi na kompleksnoi ploskosti”, Ufim. mat. zh., 13:3 (2021), 116–128 | Zbl

[11] Santalo L., Integralnaya geometriya i geometricheskie veroyatnosti, Nauka, M., 1983

[12] Khabibullin B. N., “Teorema edinstvennosti dlya subgarmonicheskikh funktsii konechnogo poryadka”, Mat. sb., 182:6 (1991), 811–827 | Zbl

[13] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, BGU, Ufa, 2012

[14] Khabibullin B. N., “Smeshannye ploschadi i polnoty sistem eksponentsialnykh funktsii”, Mat. Mezhdunar. konf. «Sovremennye metody teorii kraevykh zadach». Voronezhskaya vesennyaya mat. shkola «Pontryaginskie chteniya–XXXIV» (Voronezh, 3–9 maya 2023 g.), Izdatelskii dom VGU, Voronezh, 2023, 390–392

[15] Khabibullin B. N., Shmelëva A. V., “Vymetanie mer i subgarmonicheskikh funktsii na sistemu luchei. Klassicheskii sluchai”, Algebra anal., 31:1 (2019), 156–210

[16] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[17] Hörmander L., Notions of Convexity, Birkhäuser, Boston, 1994 | MR | Zbl

[18] Levin B. Ya., Lectures on Entire Functions, Am. Math. Soc., Providence, Rhode Island, 1996 | MR | Zbl

[19] Malliavin P., Rubel L. A., “On small entire functions of exponential type with given zeros”, Bull. Soc. Math. France., 89:2 (1961), 175–201 | DOI | MR

[20] Ransford T., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[21] Rubel L. A., Colliander J. E., Entire and Meromorphic Functions, Springer-Verlag, Berlin, 1996 | MR | Zbl