Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_233_a8, author = {V. I. Uskov}, title = {Branching equation for a first-order differential equation in a {Banach} space with quadratic perturbations of a small parameter}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {99--106}, publisher = {mathdoc}, volume = {233}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a8/} }
TY - JOUR AU - V. I. Uskov TI - Branching equation for a first-order differential equation in a Banach space with quadratic perturbations of a small parameter JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 99 EP - 106 VL - 233 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_233_a8/ LA - ru ID - INTO_2024_233_a8 ER -
%0 Journal Article %A V. I. Uskov %T Branching equation for a first-order differential equation in a Banach space with quadratic perturbations of a small parameter %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 99-106 %V 233 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_233_a8/ %G ru %F INTO_2024_233_a8
V. I. Uskov. Branching equation for a first-order differential equation in a Banach space with quadratic perturbations of a small parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 99-106. http://geodesic.mathdoc.fr/item/INTO_2024_233_a8/
[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[2] Zubova S. P., Singulyarnoe vozmuschenie lineinykh differentsialnykh uravnenii, nerazreshennykh otnositelno proizvodnoi, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., Voronezh, 1973 | Zbl
[3] Zubova S. P., “O roli vozmuschenii v zadache Koshi dlya uravneniya s fredgolmovym operatorom pri proizvodnoi”, Dokl. Akad. nauk., 454:4 (2014), 383–386 | DOI | Zbl
[4] Zubova S. P., Uskov V. I., “Asimptoticheskoe reshenie zadachi Koshi dlya uravneniya pervogo poryadka s malym parametrom v banakhovom prostranstve. Regulyarnyi sluchai”, Mat. zametki., 103:3 (2018), 392–403 | DOI | MR | Zbl
[5] Kuznetsova A. V., Ekonomiko-matematicheskie metody i modeli, BGEU, Minsk, 2000
[6] Nefedov N. N., “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsiya-diffuziya-advetsiya: teoriya i primenenie”, Zh. vychisl. mat. mat. fiz., 61:12 (2021), 2074–2094 | DOI | Zbl
[7] Nikolskii S. M., “Lineinye uravneniya v lineinykh normirovannykh prostranstvakh”, Izv. AN SSSR. Ser. mat., 7:3 (1943), 147–166 | Zbl
[8] Uskov V. I., “Issledovanie zhestkosti algebro-differentsialnoi sistemy pervogo poryadka s vozmuscheniem v pravoi chasti”, Vestn. ross. un-tov. Mat., 26:134 (2021), 172–181 | Zbl
[9] Chebotarev N. G., Teoriya algebraicheskikh funktsii, Librokom, M., 2009
[10] Christiansen P. L., Lomdahl P. S., Muto V., “On a Toda lattice model with a transversal degree of freedom”, Nonlinearity., 4:2 (1991), 477–501 | DOI | MR | Zbl
[11] Uskov V. I., “Boundary layer phenomenon for a first order descriptor equation with small parameter on the right-hand side”, J. Math. Sci., 250:1 (2020), 175–181 | DOI | MR | Zbl
[12] Zubova S. P., Raetskaya E. V., “A study of the rigidity of descriptor dynamical systems in a Banach space”, J. Math. Sci., 208:1 (2015), 119–124 | DOI | MR | Zbl