Branching equation for a first-order differential equation in a Banach space with quadratic perturbations of a small parameter
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 99-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the behavior as $\varepsilon\to0$ of solutions of the Cauchy problem for a first-order differential equation in a Banach space with quadratic operator pencils with the derivative of the unknown function. The branching equation is obtained and analyzed by using the Newton diagram. The conditions of the appearing of a boundary layer near the initial point are identified and the structure of boundary-layer functions is determined.
Keywords: branching equation, first-order differential equation, Fredholm operator, Banach space, small parameter, boundary layer
Mots-clés : quadratic perturbation
@article{INTO_2024_233_a8,
     author = {V. I. Uskov},
     title = {Branching equation for a first-order differential equation in a {Banach} space with quadratic perturbations of a small parameter},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {99--106},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a8/}
}
TY  - JOUR
AU  - V. I. Uskov
TI  - Branching equation for a first-order differential equation in a Banach space with quadratic perturbations of a small parameter
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 99
EP  - 106
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a8/
LA  - ru
ID  - INTO_2024_233_a8
ER  - 
%0 Journal Article
%A V. I. Uskov
%T Branching equation for a first-order differential equation in a Banach space with quadratic perturbations of a small parameter
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 99-106
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a8/
%G ru
%F INTO_2024_233_a8
V. I. Uskov. Branching equation for a first-order differential equation in a Banach space with quadratic perturbations of a small parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 99-106. http://geodesic.mathdoc.fr/item/INTO_2024_233_a8/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[2] Zubova S. P., Singulyarnoe vozmuschenie lineinykh differentsialnykh uravnenii, nerazreshennykh otnositelno proizvodnoi, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., Voronezh, 1973 | Zbl

[3] Zubova S. P., “O roli vozmuschenii v zadache Koshi dlya uravneniya s fredgolmovym operatorom pri proizvodnoi”, Dokl. Akad. nauk., 454:4 (2014), 383–386 | DOI | Zbl

[4] Zubova S. P., Uskov V. I., “Asimptoticheskoe reshenie zadachi Koshi dlya uravneniya pervogo poryadka s malym parametrom v banakhovom prostranstve. Regulyarnyi sluchai”, Mat. zametki., 103:3 (2018), 392–403 | DOI | MR | Zbl

[5] Kuznetsova A. V., Ekonomiko-matematicheskie metody i modeli, BGEU, Minsk, 2000

[6] Nefedov N. N., “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsiya-diffuziya-advetsiya: teoriya i primenenie”, Zh. vychisl. mat. mat. fiz., 61:12 (2021), 2074–2094 | DOI | Zbl

[7] Nikolskii S. M., “Lineinye uravneniya v lineinykh normirovannykh prostranstvakh”, Izv. AN SSSR. Ser. mat., 7:3 (1943), 147–166 | Zbl

[8] Uskov V. I., “Issledovanie zhestkosti algebro-differentsialnoi sistemy pervogo poryadka s vozmuscheniem v pravoi chasti”, Vestn. ross. un-tov. Mat., 26:134 (2021), 172–181 | Zbl

[9] Chebotarev N. G., Teoriya algebraicheskikh funktsii, Librokom, M., 2009

[10] Christiansen P. L., Lomdahl P. S., Muto V., “On a Toda lattice model with a transversal degree of freedom”, Nonlinearity., 4:2 (1991), 477–501 | DOI | MR | Zbl

[11] Uskov V. I., “Boundary layer phenomenon for a first order descriptor equation with small parameter on the right-hand side”, J. Math. Sci., 250:1 (2020), 175–181 | DOI | MR | Zbl

[12] Zubova S. P., Raetskaya E. V., “A study of the rigidity of descriptor dynamical systems in a Banach space”, J. Math. Sci., 208:1 (2015), 119–124 | DOI | MR | Zbl