On the application of the Galerkin projection method to the nonstationary diffusion equation with a variable coefficient
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present an algorithm for applying the Galerkin projection method to solve a two-dimensional nonstationary diffusion equation with a variable coefficient. The concentration of nonequilibrium minority charge carriers was found in the form of a partial sum of a double Fourier series using a system of modified Laguerre functions. The results of calculations are presented for parameters characteristic of exciton diffusion in single-crystal gallium nitride.
Mots-clés : diffusion equation, Laguerre functions
Keywords: Galerkin projection method, concentration of minority charge carriers, order error estimate, modulus of continuity
@article{INTO_2024_233_a7,
     author = {E. V. Seregina and M. A. Stepovich and M. N. Filippov},
     title = {On the application of the {Galerkin} projection method to the nonstationary diffusion equation with a variable coefficient},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a7/}
}
TY  - JOUR
AU  - E. V. Seregina
AU  - M. A. Stepovich
AU  - M. N. Filippov
TI  - On the application of the Galerkin projection method to the nonstationary diffusion equation with a variable coefficient
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 89
EP  - 98
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a7/
LA  - ru
ID  - INTO_2024_233_a7
ER  - 
%0 Journal Article
%A E. V. Seregina
%A M. A. Stepovich
%A M. N. Filippov
%T On the application of the Galerkin projection method to the nonstationary diffusion equation with a variable coefficient
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 89-98
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a7/
%G ru
%F INTO_2024_233_a7
E. V. Seregina; M. A. Stepovich; M. N. Filippov. On the application of the Galerkin projection method to the nonstationary diffusion equation with a variable coefficient. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 89-98. http://geodesic.mathdoc.fr/item/INTO_2024_233_a7/

[1] Abilov V. A., Abilov M. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti dvoinykh ryadov Fure po klassicheskim ortogonalnym mnogochlenam”, Zh. vychisl. mat. mat. fiz., 55:7 (2015), 1109–1117 | DOI | Zbl

[2] Laschenov V. K., “Priblizhenie differentsiruemykh funktsii chastnymi summami ryada Fure—Lagerra”, Izv. vuzov. Mat., 1(224) (1981), 44–57

[3] Makarenkov A. M., Seregina E. V., Stepovich M. A., “Proektsionnyi metod Galërkina resheniya statsionarnogo differentsialnogo uravneniya diffuzii v polubeskonechnoi oblasti”, Zh. vychisl. mat. mat. fiz., 57:5 (2017), 801–813 | DOI | Zbl

[4] Polyakov A. N., Stepovich M. A., Turtin D. V., “Matematicheskoe modelirovanie katodolyuminestsentsii eksitonov, generirovannykh uzkim elektronnym puchkom v poluprovodnikovom materiale”, Izv. RAN. Ser. fiz., 80:12 (2016), 1629–1633 | DOI

[5] Polyakov A. N., Noltemeyer M., Hempel T., Christen J., Stepovich M. A., “O prakticheskoi realizatsii odnoi skhemy vremyaproletnykh izmerenii v katodolyuminestsentnoi mikroskopii”, Prikl. fiz., 2015, no. 4, 11–15 | Zbl

[6] Polyakov A. N., Noltemeyer M., Hempel T., Christen J., Stepovich M. A., “Otsenka znachenii elektrofizicheskikh parametrov poluprovodnikovykh materialov po rezultatm izmerenii katodolyuminestsentsii eksitonov”, Prikl. fiz., 2012, no. 6, 41–46

[7] Seregina E. V., Stepovich M. A., Filippov M. N., “O matematicheskoi modeli diffuzii eksitonov v poluprovodnike s uchetom ikh peremennogo vremeni zhizni”, Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya., 2023, no. 3, 74–78 | DOI

[8] Stepovich M. A., Kolichestvennaya katodolyuminestsentnaya mikroskopiya pryamozonnykh materialov poluprovodnikovoi optoelektroniki, Diss. na soisk. uch. step. d-ra fiz.-mat. nauk., MGTU im. Baumana, M., 2003

[9] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Fizmatlit, M., 2007

[10] Noltemeyer M., Bertram F., Hempel T., Bastek B., Polyakov A., Christen J., Brandt M., Lorenz M., Grundmann M., “Excitonic transport in ZnO”, J. Mater. Res., 27:17 (2012), 2225–2231 | DOI

[11] Seregina E. V., Polyakov A. N., Stepovich M. A., “On the possibility of using the Galerkin projection method to simulate the two–dimensional diffusion of excitons generated by an electron beam”, J. Phys. Conf. Ser., 955 (2018), 012032 | DOI

[12] Turtin D. V., Stepovich M. A., Kalmanovich V. V., Seregina E. V., “The use of the Hankel transform to solve nonstationary diffusion problem”, J. Math. Sci., 255:6 (2021), 773–778 | DOI | MR | Zbl