Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_233_a3, author = {A. N. Naimov and M. V. Bystretskii}, title = {On the solvability of a periodic problem for a system of ordinary differential equations with quasi-homogeneous nonlinearity}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {37--45}, publisher = {mathdoc}, volume = {233}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a3/} }
TY - JOUR AU - A. N. Naimov AU - M. V. Bystretskii TI - On the solvability of a periodic problem for a system of ordinary differential equations with quasi-homogeneous nonlinearity JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 37 EP - 45 VL - 233 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_233_a3/ LA - ru ID - INTO_2024_233_a3 ER -
%0 Journal Article %A A. N. Naimov %A M. V. Bystretskii %T On the solvability of a periodic problem for a system of ordinary differential equations with quasi-homogeneous nonlinearity %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 37-45 %V 233 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_233_a3/ %G ru %F INTO_2024_233_a3
A. N. Naimov; M. V. Bystretskii. On the solvability of a periodic problem for a system of ordinary differential equations with quasi-homogeneous nonlinearity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 37-45. http://geodesic.mathdoc.fr/item/INTO_2024_233_a3/
[1] Bobylev N. A., “O postroenii pravilnykh napravlyayuschikh funktsii”, Dokl. AN SSSR., 183:2 (1968), 265–266 | Zbl
[2] Zvyagin V. G., Kornev S. V., “Metod napravlyayuschikh funktsii v zadache o suschestvovanii periodicheskikh reshenii differentsialnykh uravnenii”, Sovr. mat. Fundam. napr., 58:1 (2015), 59–81 | MR
[3] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975
[4] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972
[5] Mukhamadiev E., “K teorii periodicheskikh reshenii sistem obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR., 194:3 (1970), 510–513 | Zbl
[6] Mukhamadiev E., Naimov A. N., “O razreshimosti periodicheskoi zadachi dlya sistemy obyknovennykh differentsialnykh uravnenii s glavnoi polozhitelno odnorodnoi nelineinostyu”, Differ. uravn., 59:2 (2023), 280–282 | DOI | MR | Zbl
[7] Mukhamadiev E., Naimov A. N., “Ob apriornoi otsenke i suschestvovanii periodicheskikh reshenii dlya odnogo klassa sistem nelineinykh obyknovennykh differentsialnykh uravnenii”, Izv. vuzov. Mat., 2022, no. 4, 37–48 | Zbl
[8] Perov A. I., Kaverina V. K., “Ob odnoi zadache Vladimira Ivanovicha Zubova”, Differ. uravn., 55:2 (2019), 269–272 | DOI | Zbl