On the solvability of an integral equation associated with the fractional loaded heat conduction problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 27-36

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a one-dimensional boundary-value problem for the heat equation with a loaded term in the form of the Caputo fractional derivative with respect to a spatial variable. The problem is reduced to the Volterra integral equation with a kernel containing a Wright-type function, for which solvability conditions are obtained.
Keywords: loaded heat equation, fractional derivative, Volterra integral equation, Wright-type function
@article{INTO_2024_233_a2,
     author = {M. T. Kosmakova and A. N. Khamzeeva},
     title = {On the solvability of an integral equation associated with the fractional loaded heat conduction problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {27--36},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/}
}
TY  - JOUR
AU  - M. T. Kosmakova
AU  - A. N. Khamzeeva
TI  - On the solvability of an integral equation associated with the fractional loaded heat conduction problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 27
EP  - 36
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/
LA  - ru
ID  - INTO_2024_233_a2
ER  - 
%0 Journal Article
%A M. T. Kosmakova
%A A. N. Khamzeeva
%T On the solvability of an integral equation associated with the fractional loaded heat conduction problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 27-36
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/
%G ru
%F INTO_2024_233_a2
M. T. Kosmakova; A. N. Khamzeeva. On the solvability of an integral equation associated with the fractional loaded heat conduction problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 27-36. http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/