Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_233_a2, author = {M. T. Kosmakova and A. N. Khamzeeva}, title = {On the solvability of an integral equation associated with the fractional loaded heat conduction problem}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {27--36}, publisher = {mathdoc}, volume = {233}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/} }
TY - JOUR AU - M. T. Kosmakova AU - A. N. Khamzeeva TI - On the solvability of an integral equation associated with the fractional loaded heat conduction problem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 27 EP - 36 VL - 233 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/ LA - ru ID - INTO_2024_233_a2 ER -
%0 Journal Article %A M. T. Kosmakova %A A. N. Khamzeeva %T On the solvability of an integral equation associated with the fractional loaded heat conduction problem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 27-36 %V 233 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/ %G ru %F INTO_2024_233_a2
M. T. Kosmakova; A. N. Khamzeeva. On the solvability of an integral equation associated with the fractional loaded heat conduction problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 27-36. http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/
[1] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR
[2] Dzhenaliev M. T., Ramazanov M. I., Nagruzhennye uravneniya kak vozmuscheniya differentsialnykh uravnenii, Gylym, Almaty, 2010
[3] Iskakov S. A., Ramazanov M. I., Ivanov I. A., “Pervaya kraevaya zadacha dlya uravneniya teploprovodnosti s nagruzkoi drobnogo poryadka”, Vestn. Karagand. un-ta. Ser. Mat., 2015, no. 2 (78), 25–30
[4] Kochina H. H., “Voprosy regulirovaniya urovnya gruntovykh vod pri polivakh”, Dokl. AN SSSR., 213:1 (1973), 51–54 | Zbl
[5] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[6] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh prilozheniya, NII PMA KBNTs RAN, Nalchik, 2000
[7] Nakhushev A. M., Borisov V. N., “Kraevye zadachi dlya nagruzhennykh parabolicheskikh uravnenii i ikh prilozheniya k prognozu urovnya gruntovykh vod”, Differ. uravn., 13:1 (1977), 105–110 | MR | Zbl
[8] Polyanin A. D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001
[9] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005
[10] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[11] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR
[12] Amangaliyeva M. M., Jenaliyev M. T., Kosmakova M. T., Ramazanov M. I., “On the spectrum of Volterra integral equation with the incompressible kernel”, AIP Conf. Proc., 1611:1 (2014), 127–132 | DOI | MR
[13] Amangaliyeva M. M., Jenaliyev M. T., Kosmakova M. T., Ramazanov M. I., “Uniqueness and non-uniqueness of solutions of the boundary value problems of the heat equation”, AIP Conf. Proc., 1676:1 (2015), 020028 | DOI
[14] Caputo M., “Lineal model of dissipation whose $Q$ is almost frequancy independent, II”, Geophys. J. Astron. Soc., 13 (1967), 529–539 | DOI
[15] Jenaliyev M. T., Kosmakova M. T., Tuleutaeva Zh. M., “On the Solvability of Heat Boundary Value Problems in Sobolev Spaces”, Lobachevskii J. Math., 43:8 (2022), 2133–2144 | DOI | MR | Zbl
[16] Jenaliyev M. T., Ramazanov M. I., Kosmakova M. T., Tuleutaeva Z. M., “On the solution to a two-dimensional heat conduction problem in a degenerate domain”, Eurasian Math. J., 11 (3) (2020), 89–94 | DOI | MR | Zbl
[17] Kosmakova M. T., “On an integral equation of the Dirichlet problem for the heat equation in the degenerating domain”, Bull. Karagand. Univ. Math., 81 (1) (2016), 62–67
[18] Kosmakova M. T., Iskakov S. A., Kasymova L. Zh., “To solving the fractionally loaded heat equation”, Bull. Karagand. Univ. Math., 101 (1) (2021), 65–77 | DOI | MR
[19] Kosmakova M. T., Izhanova K. A., Khamzeyeva A. N., “On the non-uniqueness of the solution to a boundary value problem of heat conduction with a load in the form of a fractional derivative”, Bull. Karagand. Univ. Math., 108 (4) (2022), 98–106 | DOI
[20] Kosmakova M. T., Ramazanov M. I., Kasymova L. Zh., “To Solving the heat equation with fractional load”, Lobachevskii J. Math., 42:12 (2021), 2854–2866 | DOI | MR | Zbl
[21] Kosmakova M. T., Ramazanov M. I., Tokesheva A. S., Khairkulova A. A., “On the non-uniqueness of solution to the homogeneous boundary-value problem for the heat conduction equation in an angular domain”, Bull. Karagand. Univ. Math., 84 (4) (2016), 80–87 | DOI | MR
[22] Pskhu A. V., Kosmakova M. T., Akhmanova D. M., Kassymova L. Zh., Assetov A. A., “Boundary-value problem for the heat equation with a load as the Riemann–Liouville fractional derivative”, Bull. Karagand. Univ. Math., 105 (1) (2022), 74–87 | DOI
[23] Ramazanov M. I., Kosmakova M. T., Kasymova L. Zh., Lobachevskii J. Math., 41:9 (On a problem of heat equation with fractional load), 1873–1885 | DOI | MR | Zbl