On the solvability of an integral equation associated with the fractional loaded heat conduction problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a one-dimensional boundary-value problem for the heat equation with a loaded term in the form of the Caputo fractional derivative with respect to a spatial variable. The problem is reduced to the Volterra integral equation with a kernel containing a Wright-type function, for which solvability conditions are obtained.
Keywords: loaded heat equation, fractional derivative, Volterra integral equation, Wright-type function
@article{INTO_2024_233_a2,
     author = {M. T. Kosmakova and A. N. Khamzeeva},
     title = {On the solvability of an integral equation associated with the fractional loaded heat conduction problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {27--36},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/}
}
TY  - JOUR
AU  - M. T. Kosmakova
AU  - A. N. Khamzeeva
TI  - On the solvability of an integral equation associated with the fractional loaded heat conduction problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 27
EP  - 36
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/
LA  - ru
ID  - INTO_2024_233_a2
ER  - 
%0 Journal Article
%A M. T. Kosmakova
%A A. N. Khamzeeva
%T On the solvability of an integral equation associated with the fractional loaded heat conduction problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 27-36
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/
%G ru
%F INTO_2024_233_a2
M. T. Kosmakova; A. N. Khamzeeva. On the solvability of an integral equation associated with the fractional loaded heat conduction problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 27-36. http://geodesic.mathdoc.fr/item/INTO_2024_233_a2/

[1] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR

[2] Dzhenaliev M. T., Ramazanov M. I., Nagruzhennye uravneniya kak vozmuscheniya differentsialnykh uravnenii, Gylym, Almaty, 2010

[3] Iskakov S. A., Ramazanov M. I., Ivanov I. A., “Pervaya kraevaya zadacha dlya uravneniya teploprovodnosti s nagruzkoi drobnogo poryadka”, Vestn. Karagand. un-ta. Ser. Mat., 2015, no. 2 (78), 25–30

[4] Kochina H. H., “Voprosy regulirovaniya urovnya gruntovykh vod pri polivakh”, Dokl. AN SSSR., 213:1 (1973), 51–54 | Zbl

[5] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[6] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh prilozheniya, NII PMA KBNTs RAN, Nalchik, 2000

[7] Nakhushev A. M., Borisov V. N., “Kraevye zadachi dlya nagruzhennykh parabolicheskikh uravnenii i ikh prilozheniya k prognozu urovnya gruntovykh vod”, Differ. uravn., 13:1 (1977), 105–110 | MR | Zbl

[8] Polyanin A. D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001

[9] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[10] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[11] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[12] Amangaliyeva M. M., Jenaliyev M. T., Kosmakova M. T., Ramazanov M. I., “On the spectrum of Volterra integral equation with the incompressible kernel”, AIP Conf. Proc., 1611:1 (2014), 127–132 | DOI | MR

[13] Amangaliyeva M. M., Jenaliyev M. T., Kosmakova M. T., Ramazanov M. I., “Uniqueness and non-uniqueness of solutions of the boundary value problems of the heat equation”, AIP Conf. Proc., 1676:1 (2015), 020028 | DOI

[14] Caputo M., “Lineal model of dissipation whose $Q$ is almost frequancy independent, II”, Geophys. J. Astron. Soc., 13 (1967), 529–539 | DOI

[15] Jenaliyev M. T., Kosmakova M. T., Tuleutaeva Zh. M., “On the Solvability of Heat Boundary Value Problems in Sobolev Spaces”, Lobachevskii J. Math., 43:8 (2022), 2133–2144 | DOI | MR | Zbl

[16] Jenaliyev M. T., Ramazanov M. I., Kosmakova M. T., Tuleutaeva Z. M., “On the solution to a two-dimensional heat conduction problem in a degenerate domain”, Eurasian Math. J., 11 (3) (2020), 89–94 | DOI | MR | Zbl

[17] Kosmakova M. T., “On an integral equation of the Dirichlet problem for the heat equation in the degenerating domain”, Bull. Karagand. Univ. Math., 81 (1) (2016), 62–67

[18] Kosmakova M. T., Iskakov S. A., Kasymova L. Zh., “To solving the fractionally loaded heat equation”, Bull. Karagand. Univ. Math., 101 (1) (2021), 65–77 | DOI | MR

[19] Kosmakova M. T., Izhanova K. A., Khamzeyeva A. N., “On the non-uniqueness of the solution to a boundary value problem of heat conduction with a load in the form of a fractional derivative”, Bull. Karagand. Univ. Math., 108 (4) (2022), 98–106 | DOI

[20] Kosmakova M. T., Ramazanov M. I., Kasymova L. Zh., “To Solving the heat equation with fractional load”, Lobachevskii J. Math., 42:12 (2021), 2854–2866 | DOI | MR | Zbl

[21] Kosmakova M. T., Ramazanov M. I., Tokesheva A. S., Khairkulova A. A., “On the non-uniqueness of solution to the homogeneous boundary-value problem for the heat conduction equation in an angular domain”, Bull. Karagand. Univ. Math., 84 (4) (2016), 80–87 | DOI | MR

[22] Pskhu A. V., Kosmakova M. T., Akhmanova D. M., Kassymova L. Zh., Assetov A. A., “Boundary-value problem for the heat equation with a load as the Riemann–Liouville fractional derivative”, Bull. Karagand. Univ. Math., 105 (1) (2022), 74–87 | DOI

[23] Ramazanov M. I., Kosmakova M. T., Kasymova L. Zh., Lobachevskii J. Math., 41:9 (On a problem of heat equation with fractional load), 1873–1885 | DOI | MR | Zbl