On some properties of stationary stochastic processes with fuzzy states
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 118-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, continuous stochastic processes with fuzzy states are studied. The main attention is paid to the class of stationary fuzzy stochastic processes. The properties of their numerical characteristics are established: fuzzy expectations, expectations, and correlation functions. Their spectral representation and the generalized Wiener–Khinchin theorem are substantiated. The results obtained are based on the properties of fuzzy stochastic variables and numerical stochastic processes. Triangular fuzzy stochastic processes are considered as examples.
Keywords: continuous stochastic process, fuzzy state, fuzzy expectation, correlation function
Mots-clés : spectral decomposition
@article{INTO_2024_233_a10,
     author = {V. L. Khatskevich},
     title = {On some properties of stationary stochastic processes with fuzzy states},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {118--126},
     publisher = {mathdoc},
     volume = {233},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_233_a10/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - On some properties of stationary stochastic processes with fuzzy states
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 118
EP  - 126
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_233_a10/
LA  - ru
ID  - INTO_2024_233_a10
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T On some properties of stationary stochastic processes with fuzzy states
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 118-126
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_233_a10/
%G ru
%F INTO_2024_233_a10
V. L. Khatskevich. On some properties of stationary stochastic processes with fuzzy states. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 4, Tome 233 (2024), pp. 118-126. http://geodesic.mathdoc.fr/item/INTO_2024_233_a10/

[1] Averkin A. N., Nechetkie mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta, Nauka, M., 1986

[2] Venttsel E. S., Ovcharov L. A., Teoriya sluchainykh protsessov i ikh inzhenernye prilozheniya, Knorus, M., 2016 | MR

[3] Gmurman V. E., Teoriya veroyatnostei i matematicheskaya statistika, Vysshaya shkola, M., 2003 | MR

[4] Demenkov N. P., Mikrin E. A., Mochalov I. A., “Markovskie protsessy s nechetkimi sostoyaniyami”, Inform. tekhnol., 26:6 (2020), 323–334

[5] Pegat A., Nechetkoe modelirovanie i upravlenie, BINOM, M., 2015

[6] Khatskevich V. L., “O nekotorykh svoistvakh nechetkikh ozhidanii i nelineinykh nechetkikh ozhidanii nechetko-sluchainykh velichin”, Izv. vuzov. Mat., 2022, no. 11, 97–109 | Zbl

[7] Shvedov A. S., “Otsenivanie srednikh i kovariatsii nechetko-sluchainykh velichin”, Prikl. ekonometrika., 42 (2016), 121–138

[8] Yazenin A. V., Osnovnye ponyatiya teorii vozmozhnostei, Fizmatlit, M., 2016

[9] Dubois D., Prade H., “The mean value of fuzzy number”, Fuzzy Sets Syst., 24:3 (1987), 279–300 | DOI | MR | Zbl

[10] Feng Y., Hu. L., Shu H., “The variance and covariance of fuzzy random variables”, Fuzzy Syst., 120 (2001), 487–497 | DOI | MR | Zbl

[11] Nguyen H. T., Wu. B., Fundamentals of Statistics with Fuzzy Data, Springer-Verlag, Berlin–Heidelberg, 2006 | Zbl

[12] Puri M. L., Ralescu D. A., “Fuzzy random variables”, J. Math. Anal. Appl., 114 (1986), 409–422 | DOI | MR | Zbl