Group analysis of the McKean system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 153-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the kinetic McKean system for two groups of particles. The system represents the Boltzmann kinetic equation, in this model, the momentum and the energy are not conserved. Using methods of group analysis, we obtain a solution representing the density of gas particles. Similarly, exact solutions for other kinetic models can be found.
Keywords: kinetic system McKean, group analysis
Mots-clés : invariant solution
@article{INTO_2024_232_a11,
     author = {S. A. Dukhnovskii},
     title = {Group analysis of the {McKean} system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {153--157},
     publisher = {mathdoc},
     volume = {232},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a11/}
}
TY  - JOUR
AU  - S. A. Dukhnovskii
TI  - Group analysis of the McKean system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 153
EP  - 157
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_232_a11/
LA  - ru
ID  - INTO_2024_232_a11
ER  - 
%0 Journal Article
%A S. A. Dukhnovskii
%T Group analysis of the McKean system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 153-157
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_232_a11/
%G ru
%F INTO_2024_232_a11
S. A. Dukhnovskii. Group analysis of the McKean system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 153-157. http://geodesic.mathdoc.fr/item/INTO_2024_232_a11/

[9] Vasileva O. A., Dukhnovskii S. A., Radkevich E. V., “O lokalnom ravnovesii uravneniya Karlemana”, Problemy matematicheskogo analiza. T. 78, 2015, 165–190 | Zbl

[10] Vasileva O. A., Dukhnovskii S. A., Radkevich E. V., “O prirode lokalnogo ravnovesiya uravnenii Karlemana i Godunova—Sultangazina”, Sovr. mat. Fundam. napr., 60 (2016), 23–81

[11] Godunov S. K., Sultangazin U. M., “O diskretnykh modelyakh kineticheskogo uravneniya Boltsmana”, Usp. mat. nauk., 26:3 (1971), 3–51 | MR | Zbl

[12] Dukhnovskii S. A., “Test Penleve i avtomodelnoe reshenie kineticheskoi modeli”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 176 (2020), 91–94 | DOI | MR

[13] Ibragimov N. Kh., “Gruppovoi analiz obyknovennykh differentsialnykh uravnenii i printsip invariantnosti v matematicheskoi fizike”, Usp. mat. nauk., 47:4 (1992), 83–144 | MR | Zbl

[14] Ilin O. V., “Statsionarnye resheniya kineticheskoi modeli Broduella”, Teor. mat. fiz., 170:3 (2012), 481–488 | DOI

[15] Ilin O. V., “Simmetrii, funktsiya toka i tochnye resheniya dlya dvumernoi statsionarnoi kineticheskoi modeli Broduella”, Teor. mat. fiz., 179:3 (2014), 350–359 | DOI

[16] Lindblom O., Eiler N., “Reshenie uravnenii Boltsmana dlya diskretnykh skorostei pri pomoschi uravnenii Beitmena i Rikkati”, Teor. mat. fiz., 131:2 (2002), 522–526

[17] Platonova K. S., Borovskikh A. V., “Gruppovoi analiz uravnenii Boltsmana i Vlasova”, Teor. mat. fiz., 203:3 (2020), 417–450 | DOI | MR | Zbl

[18] Polyanin A. D., Zaitsev V. F, Zhurov A. I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki, Fizmatlit, M., 2005

[19] Radkevich E. V., “O diskretnykh kineticheskikh uravneniyakh”, Dokl. Akad. nauk., 447:4 (2012), 369–373 | MR | Zbl

[20] Radkevich E. V., “O povedenii na bolshikh vremenakh reshenii zadachi Koshi dlya dvumernogo kineticheskogo uravneniya”, Sovr. mat. Fundam. napr., 47 (2013), 108–139

[21] Dukhnovsky S. A., “On solutions of the kinetic McKean system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 94:3 (2020), 3–11 | MR | Zbl

[22] Euler N., Steeb W.-H., “Painlevé test and discrete Boltzmann equations”, Austr. J. Phys., 42 (1989), 1–10 | DOI | MR

[23] Ovsiannikov L. V., Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | Zbl