Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_232_a1, author = {V. R. Barseghyan}, title = {On problems of boundary control and optimal control of a distributed inhomogeneous oscillatory system with given intermediate conditions on the state functions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {13--29}, publisher = {mathdoc}, volume = {232}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_232_a1/} }
TY - JOUR AU - V. R. Barseghyan TI - On problems of boundary control and optimal control of a distributed inhomogeneous oscillatory system with given intermediate conditions on the state functions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 13 EP - 29 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_232_a1/ LA - ru ID - INTO_2024_232_a1 ER -
%0 Journal Article %A V. R. Barseghyan %T On problems of boundary control and optimal control of a distributed inhomogeneous oscillatory system with given intermediate conditions on the state functions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 13-29 %V 232 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_232_a1/ %G ru %F INTO_2024_232_a1
V. R. Barseghyan. On problems of boundary control and optimal control of a distributed inhomogeneous oscillatory system with given intermediate conditions on the state functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 3, Tome 232 (2024), pp. 13-29. http://geodesic.mathdoc.fr/item/INTO_2024_232_a1/
[1] Barsegyan V. R., “Optimalnoe granichnoe upravlenie smescheniem na dvukh kontsakh pri kolebanii sterzhnya, sostoyaschego iz dvukh uchastkov raznoi plotnosti i uprugosti”, Differ. uravn. protsessy upravl., 2022, no. 2, 41–54 | Zbl
[2] Barsegyan V. R., “Optimalnoe granichnoe upravlenie raspredelennoi neodnorodnoi kolebatelnoi sistemoi s zadannymi sostoyaniyami v promezhutochnye momenty vremeni”, Zh. vychisl. mat. mat. fiz., 63:1 (2023), 74–84 | DOI
[3] Butkovskii A. G., metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975
[4] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti uprugikh kolebanii posledovatelno soedinennykh ob'ektov s raspredelennymi parametrami”, Tr. In-ta mat. mekh. UrO RAN., 17:1 (2011), 85–92
[5] Zvereva M. B., Naidyuk F. O., Zalukaeva Zh. O., “Modelirovanie kolebanii singulyarnoi struny”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2014, no. 2, 111–119 | Zbl
[6] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975
[7] Ilin V. A., “Optimizatsiya granichnogo upravleniya kolebaniyami sterzhnya, sostoyaschego iz dvukh raznorodnykh uchastkov”, Dokl. RAN., 440:2 (2011), 159–163 | Zbl
[8] Ilin V. A., “O privedenii v proizvolno zadannoe sostoyanie kolebanii pervonachalno pokoyaschegosya sterzhnya, sostoyaschego iz dvukh raznorodnykh uchastkov”, Dokl. RAN., 435:6 (2010), 732–735 | Zbl
[9] Korzyuk V. I., Kozlovskaya I. S., “Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoi skorostyu v nekotoryi moment vremeni. II”, Tr. In-ta mat. NAN Belarusi., 19:1 (2011), 62–70 | MR | Zbl
[10] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968
[11] Kuleshov A. A., “Smeshannye zadachi dlya uravneniya prodolnykh kolebanii neodnorodnogo sterzhnya i uravneniya poperechnykh kolebanii neodnorodnoi struny, sostoyaschikh iz dvukh uchastkov raznoi plotnosti i uprugosti”, Dokl. RAN., 442:5 (2012), 594–597 | Zbl
[12] Lvova N. N., “Optimalnoe upravlenie nekotoroi raspredelennoi neodnorodnoi kolebatelnoi sistemoi”, Avtomat. telemekh., 1973, no. 10, 22–32 | Zbl
[13] Provotorov V. V., “Postroenie granichnykh upravlenii v zadache o gashenii kolebanii sistemy strun”, Vestn. Sankt-Peterb. un-ta. Prikl. mat. Inform. Protsessy upravl., 1 (2012), 62–71
[14] Rogozhnikov A. M., “Issledovanie smeshannoi zadachi, opisyvayuschei protsess kolebanii sterzhnya, sostoyaschego iz neskolkikh uchastkov s proizvolnymi dlinami”, Dokl. RAN., 444 (2012), 488–491 | MR | Zbl
[15] Amara J. Ben, Beldi E., “Boundary controllability of two vibrating strings connected by a point mass with variable coefficients”, SIAM J. Control Optim., 57:5 (2019), 3360–3387 | DOI | MR | Zbl
[16] Amara J. Ben, Bouzidi H., “Null boundary controllability of a one-dimensional heat equation with an internal point mass and variable coefficients”, J. Math. Phys., 59:1 (2018), 1–22 | MR | Zbl
[17] Barseghyan V. R., “Control problem of string vibrations with inseparable multipoint conditions at intermediate points in time”, Mech. Solids., 54:8 (2019), 1216–1226 | DOI
[18] Barseghyan V. R., “The problem of boundary control of displacement at two ends by the process of oscillation of a rod consisting of two sections of different density and elasticity”, Mech. Solids., 58:2 (2023), 483–491 | DOI | MR | Zbl
[19] Barseghyan V. R., “On the controllability and observability of linear dynamic systems with variable structure”, Proc. Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (Moscow, June 1-3, 2016), 2016, 1–3
[20] Barseghyan V. R., Barseghyan T. V., “On an approach to the problems of control of dynamic system with nonseparated multipoint intermediate conditions”, Automat. Remote Control., 76:4 (2015), 549–559 | DOI | MR | Zbl
[21] Barseghyan V., Solodusha S., “On the optimal control problem for vibrations of the rod/string consisting of two non-homogeneous sections with the condition at an intermediate iime”, Mathematics., 10:23 (2022), 4444 | DOI
[22] Barseghyan V., Solodusha S., “Control of string vibrations by displacement of one end with the other end fixed, given the deflection form at an intermediate moment of time”, Axioms., 11:4 (2022), 157 | DOI | MR
[23] Barseghyan V., Solodusha S., “Optimal boundary control of string vibrations with given shape of deflection at a certain moment of time”, Lect. Notes Comp. Sci., 12755 (2021), 299–313 | DOI | MR | Zbl
[24] Barseghyan V., Solodusha S., “On one problem in optimal boundary control for string vibrations with a given velocity of points at an intermediate moment of time”, Proc. International Russian Automation Conference (RusAutoCon) (Sochi, September 5-11, 2021), Sochi, 2021, 343–349 | MR
[25] Barseghyan V. R., Solodusha S. V., “On one boundary control problem of string vibrations with given velocity of points at an intermediate moment of time”, J. Phys. Conf. Ser., 2021 | MR
[26] Mercier D., Regnier V., “Boundary controllability of a chain of serially connected Euler–Bernoulli beams with interior masses”, Collect. Math., 60:3 (2009), 307–334 | DOI | MR | Zbl