Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_231_a9, author = {V. N. Popov and O. V. Germider}, title = {On the construction of solutions of the inhomogeneous biharmonic equation in problems of mechanics of thin isotropic plates}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {100--106}, publisher = {mathdoc}, volume = {231}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a9/} }
TY - JOUR AU - V. N. Popov AU - O. V. Germider TI - On the construction of solutions of the inhomogeneous biharmonic equation in problems of mechanics of thin isotropic plates JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 100 EP - 106 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_231_a9/ LA - ru ID - INTO_2024_231_a9 ER -
%0 Journal Article %A V. N. Popov %A O. V. Germider %T On the construction of solutions of the inhomogeneous biharmonic equation in problems of mechanics of thin isotropic plates %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 100-106 %V 231 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_231_a9/ %G ru %F INTO_2024_231_a9
V. N. Popov; O. V. Germider. On the construction of solutions of the inhomogeneous biharmonic equation in problems of mechanics of thin isotropic plates. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 100-106. http://geodesic.mathdoc.fr/item/INTO_2024_231_a9/
[1] Belyaev V. A., Bryndin L. S., Golushko S. K., Semisalov B. V., Shapeev V. P., “H-, P- i HR-varianty metoda kollokatsii i naimenshikh kvadratov dlya resheniya kraevykh zadach dlya bigarmonicheskogo uravneniya v neregulyarnykh oblastyakh i ikh prilozheniya”, Zh. vychisl. mat. mat. fiz., 62:4 (2022), 531–552 | Zbl
[2] Golushko S. K., Idimeshev S. V., Shapeev V. P., “Metod kollokatsii i naimenshikh nevyazok v prilozhenii k zadacham mekhaniki izotropnykh plastin”, Vychisl. tekhnol., 18:6 (2013), 31–43
[3] Karchevskii A. L., “Vychislenie napryazhenii v ugolnom plaste s uchetom diffuzii gaza”, Sib. zh. industr. mat., 19:4 (2016), 31–43 | Zbl
[4] Ryazhskikh V. I., Slyusarev M. I., Popov M. I., “Chislennoe integrirovanie bigarmonicheskogo uravneniya v kvadratnoi oblasti”, Vestn. S.-Peterb. un-ta. Ser. 10. Prikl. mat. Inform. Protsessy upravl., 1 (2013), 52–62
[5] Shapeev V. P., Bryndin L. S., Belyaev V. A., “HP-Variant metoda kollokatsii i naimenshikh kvadratov s integralnymi kollokatsiyami resheniya bigarmonicheskogo uravneniya”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 26:3 (2022), 556–572 | DOI | Zbl
[6] Baseri A., Abbasbandy S., Babolian E., “A collocation method for fractional diffusion equation in a long time with Chebyshev functions”, Appl. Math. Comput., 322 (2018), 55–65 | MR | Zbl
[7] Liu S., Trenkler G., “Hadamard, Khatri-Rao, Kronecker and other matrix products”, Int. J. Inform. Syst. Sci., 4:1 (2008), 160–177 | MR | Zbl
[8] Mai-Duy N., Strunin D., Karunasena W., “A new high-order nine-point stencil, based on integrated-RBF approximations, for the first biharmonic equation”, Eng. Anal. Bound. Elements., 143 (2022), 687–699 | DOI | MR | Zbl
[9] Mason J., Handscomb D., Chebyshev Polynomials, CRC Press, Florida, 2003 | MR | Zbl
[10] Shao W., Wu X., “An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations”, Appl. Math. Model., 39:9 (2015), 2554–2569 | DOI | MR | Zbl
[11] Shao W., Wu X., Wang C., “Numerical study of an adaptive domain decompositionalgorithm based on Chebyshev tau method forsolving singular perturbed problems”, Appl. Num. Math., 118 (2017), 19–32 | DOI | MR | Zbl
[12] Timoshenko S., Woinowsky–Krieger S., Theory of Plates and Shells, McGraw-Hill, New York, 1959 | MR
[13] Ye X., Zhang Sh., “A family of H-div-div mixed triangular finite elements for the biharmonic equation”, Res. Appl. Math., 15 (2022), 100318 | DOI | MR | Zbl