On the construction of solutions of the inhomogeneous biharmonic equation in problems of mechanics of thin isotropic plates
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 100-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a method for constructing a solution of the inhomogeneous biharmonic equation as applied to problems in the mechanics of thin isotropic plates. The method is based on the Chebyshev polynomial approximation of the eighth-order mixed partial derivative of the unknown function. Chebyshev polynomials of the first kind were used as basis functions. The proposed method is used to simulate the bending of an elastic isotropic rectangular plate under the action of a transverse load. The results obtained by the collocation method are analyzed; the roots of Chebyshev polynomials of the first kind are used as collocation points.
Mots-clés : polynomial approximation
Keywords: Chebyshev polynomials, rectangular plate, stress-strain state
@article{INTO_2024_231_a9,
     author = {V. N. Popov and O. V. Germider},
     title = {On the construction of solutions of the inhomogeneous biharmonic equation in problems of mechanics of thin isotropic plates},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {100--106},
     publisher = {mathdoc},
     volume = {231},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a9/}
}
TY  - JOUR
AU  - V. N. Popov
AU  - O. V. Germider
TI  - On the construction of solutions of the inhomogeneous biharmonic equation in problems of mechanics of thin isotropic plates
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 100
EP  - 106
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_231_a9/
LA  - ru
ID  - INTO_2024_231_a9
ER  - 
%0 Journal Article
%A V. N. Popov
%A O. V. Germider
%T On the construction of solutions of the inhomogeneous biharmonic equation in problems of mechanics of thin isotropic plates
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 100-106
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_231_a9/
%G ru
%F INTO_2024_231_a9
V. N. Popov; O. V. Germider. On the construction of solutions of the inhomogeneous biharmonic equation in problems of mechanics of thin isotropic plates. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 100-106. http://geodesic.mathdoc.fr/item/INTO_2024_231_a9/

[1] Belyaev V. A., Bryndin L. S., Golushko S. K., Semisalov B. V., Shapeev V. P., “H-, P- i HR-varianty metoda kollokatsii i naimenshikh kvadratov dlya resheniya kraevykh zadach dlya bigarmonicheskogo uravneniya v neregulyarnykh oblastyakh i ikh prilozheniya”, Zh. vychisl. mat. mat. fiz., 62:4 (2022), 531–552 | Zbl

[2] Golushko S. K., Idimeshev S. V., Shapeev V. P., “Metod kollokatsii i naimenshikh nevyazok v prilozhenii k zadacham mekhaniki izotropnykh plastin”, Vychisl. tekhnol., 18:6 (2013), 31–43

[3] Karchevskii A. L., “Vychislenie napryazhenii v ugolnom plaste s uchetom diffuzii gaza”, Sib. zh. industr. mat., 19:4 (2016), 31–43 | Zbl

[4] Ryazhskikh V. I., Slyusarev M. I., Popov M. I., “Chislennoe integrirovanie bigarmonicheskogo uravneniya v kvadratnoi oblasti”, Vestn. S.-Peterb. un-ta. Ser. 10. Prikl. mat. Inform. Protsessy upravl., 1 (2013), 52–62

[5] Shapeev V. P., Bryndin L. S., Belyaev V. A., “HP-Variant metoda kollokatsii i naimenshikh kvadratov s integralnymi kollokatsiyami resheniya bigarmonicheskogo uravneniya”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 26:3 (2022), 556–572 | DOI | Zbl

[6] Baseri A., Abbasbandy S., Babolian E., “A collocation method for fractional diffusion equation in a long time with Chebyshev functions”, Appl. Math. Comput., 322 (2018), 55–65 | MR | Zbl

[7] Liu S., Trenkler G., “Hadamard, Khatri-Rao, Kronecker and other matrix products”, Int. J. Inform. Syst. Sci., 4:1 (2008), 160–177 | MR | Zbl

[8] Mai-Duy N., Strunin D., Karunasena W., “A new high-order nine-point stencil, based on integrated-RBF approximations, for the first biharmonic equation”, Eng. Anal. Bound. Elements., 143 (2022), 687–699 | DOI | MR | Zbl

[9] Mason J., Handscomb D., Chebyshev Polynomials, CRC Press, Florida, 2003 | MR | Zbl

[10] Shao W., Wu X., “An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations”, Appl. Math. Model., 39:9 (2015), 2554–2569 | DOI | MR | Zbl

[11] Shao W., Wu X., Wang C., “Numerical study of an adaptive domain decompositionalgorithm based on Chebyshev tau method forsolving singular perturbed problems”, Appl. Num. Math., 118 (2017), 19–32 | DOI | MR | Zbl

[12] Timoshenko S., Woinowsky–Krieger S., Theory of Plates and Shells, McGraw-Hill, New York, 1959 | MR

[13] Ye X., Zhang Sh., “A family of H-div-div mixed triangular finite elements for the biharmonic equation”, Res. Appl. Math., 15 (2022), 100318 | DOI | MR | Zbl