On the reconstruction of solutions of the Cauchy problem for the singular heat equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 89-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of reconstructing solutions of the singular heat equation on the positive part of the real axis at a certain moment of time is solved by inaccurate measurements of this solution at other previous moments of time. Explicit expressions for the optimal reconstruction method and its errors are obtained.
Keywords: Bessel operator, extremal problem, heat equation
Mots-clés : optimal reconstruction, Fourier–Bessel transform
@article{INTO_2024_231_a8,
     author = {M. V. Polovinkina},
     title = {On the reconstruction of solutions of the {Cauchy} problem for the singular heat equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--99},
     publisher = {mathdoc},
     volume = {231},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a8/}
}
TY  - JOUR
AU  - M. V. Polovinkina
TI  - On the reconstruction of solutions of the Cauchy problem for the singular heat equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 89
EP  - 99
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_231_a8/
LA  - ru
ID  - INTO_2024_231_a8
ER  - 
%0 Journal Article
%A M. V. Polovinkina
%T On the reconstruction of solutions of the Cauchy problem for the singular heat equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 89-99
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_231_a8/
%G ru
%F INTO_2024_231_a8
M. V. Polovinkina. On the reconstruction of solutions of the Cauchy problem for the singular heat equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 89-99. http://geodesic.mathdoc.fr/item/INTO_2024_231_a8/

[1] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[2] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnymi operatorami tipa Besselya”, Mat. sb., 36 (78):2 (1955), 299–310

[3] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napr., 64:2 (2018), 211–426 | MR

[4] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR

[5] Kipriyanov I. A., “Preobrazovanie Fure—Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. Mat. in-ta im. V. A. Steklova RAN., 89 (1967), 130–213 | Zbl

[6] Kipriyanov I. A., Zasorin Yu. V., “O fundamentalnom reshenii volnovogo uravneniya s mnogimi osobennostyami”, Differ. uravn., 28:3 (1992), 452–462 | MR | Zbl

[7] Kipriyanov I. A., Kulikov A. A., “Teorema Peli—Vinera—Shvartsa dlya preobrazovaniya Fure—Besselya”, Dokl. AN SSSR., 298:1 (1988), 13–17 | Zbl

[8] Levitan B. M., “Razlozhenie v ryady i integraly Fure po funktsiyam Besselya”, Usp. mat. nauk., 6:2 (1951), 102–143 | MR | Zbl

[9] Lyakhov L. N., $V$-gipersingulyarnye integraly i ikh prilozheniya k opisaniyu funktsionalnykh klassov Kipriyanova i k integralnym uravneniyam s $V$-potentsialnymi yadrami, LGPU, Lipetsk, 2007

[10] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie resheniya uravneniya teploprovodnosti po netochnym izmereniyam”, Mat. sb., 200:5 (2009), 37–54 | DOI | MR | Zbl

[11] Magaril-Ilyaev G. G., Sivkova E. O., “Nailuchshee vosstanovlenie operatora Laplasa funktsii po ee netochno zadannomu spektru”, Mat. sb., 203:4 (2012), 119–130 | DOI | Zbl

[12] Sivkova E. O., “Ob optimalnom vosstanovlenii laplasiana funktsii po ee netochno zadannomu preobrazovaniyu Fure”, Vladikavkaz. mat. zh., 14:4 (2012), 63–72 | MR | Zbl

[13] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019

[14] Muravnik A. B., “Fourier–Bessel transformation of compactly supported non-negative functions and estimates of solutions of singular differential equations”, Funct. Differ. Equations., 8:3–4 (2001), 353–363 | MR | Zbl

[15] Muravnik A. B., “Functional differential parabolic equations: Integral transformations and qualitative properties of solutions of the Cauchy problem”, J. Math. Sci., 216:3 (2016), 345–496 | DOI | MR | Zbl

[16] Polovinkina M. V., Polovinkin I. P., “Recovery of the solution of the singular heat equation from measurement data”, Bol. Soc. Mat. Mex., 29 (2023), 41 | DOI | MR | Zbl