Treatment of symmetry in the Ritz method for the Schr\"odinger equation in crystals with a basis
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 74-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to treatment of symmetry in the Schrödinger equation with a periodic potential for crystals with a basis. We present a general group-theoretical approach, which yields the matrix elements of the Hamiltonian in the tight-binding approximation, using the spatial symmetry of the problem, time reversal symmetry, and the Hermitian property of the Hamiltonian. The developed mathematical theory generalizes the well-known result for crystals with two atoms in the unit cell to the case of crystals with several atoms in the unit cell.
Keywords: Schrödinger equation, periodic potential, Ritz method, crystal lattice, representation theory
Mots-clés : space group
@article{INTO_2024_231_a6,
     author = {N. B. Melnikov and B. I. Reser},
     title = {Treatment of symmetry in the {Ritz} method for the {Schr\"odinger} equation in crystals with a basis},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {74--82},
     publisher = {mathdoc},
     volume = {231},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a6/}
}
TY  - JOUR
AU  - N. B. Melnikov
AU  - B. I. Reser
TI  - Treatment of symmetry in the Ritz method for the Schr\"odinger equation in crystals with a basis
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 74
EP  - 82
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_231_a6/
LA  - ru
ID  - INTO_2024_231_a6
ER  - 
%0 Journal Article
%A N. B. Melnikov
%A B. I. Reser
%T Treatment of symmetry in the Ritz method for the Schr\"odinger equation in crystals with a basis
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 74-82
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_231_a6/
%G ru
%F INTO_2024_231_a6
N. B. Melnikov; B. I. Reser. Treatment of symmetry in the Ritz method for the Schr\"odinger equation in crystals with a basis. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 74-82. http://geodesic.mathdoc.fr/item/INTO_2024_231_a6/

[1] Dzhons G., Teoriya zon Brillyuena i elektronnye sostoyaniya v kristallakh, Mir, M., 1968

[2] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989

[3] Callaway J., Quantum Theory of the Solid State, Academic, New York, 1991

[4] Egorov R. F., Reser B. I., Shirokovskii V. P., “Consistent treatment of symmetry in the tight binding approximation”, Phys. Stat. Sol., 26:2 (1968), 391–408 | DOI

[5] Fletcher G. C., The Electron Band Theory of Solids, North-Holland, Amsterdam, 1971

[6] Hergert W., Geilhufe R. M., Group Theory in Solid State Physics and Photonics, Wiley, New York, 2018 | Zbl

[7] Katzke H., Tolédano P., Depmeier W., “Phase transitions between polytypes and intralayer superstructures in transition metal dichalcogenides”, Phys. Rev. B., 69 (2004), 134111 | DOI

[8] Melnikov N. B., Reser B. I., Space Group Representations: Theory, Tables and Applications, Springer, Berlin, 2023 | MR

[9] Melnikov N. B., Reser B. I., “Treatment of symmetry in the tight-binding method for crystals with several atoms per unit cell”, Phys. Scr., 98 (2023), 065952 | DOI

[10] Raimes S., The Wave Mechanics of Electrons in Metals, North-Holland, Amsterdam, 1963 | MR

[11] Schiff L., Quantum Mechanics, McGraw-Hill, New York, 1968

[12] Zhang Z., Yu Z.-M., Liu G.-B., Yao Y., “MagneticTB: A package for tight-binding model of magnetic and non-magnetic materials”, Comput. Phys. Commun., 270 (2022), 108153 | DOI | MR