Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2024_231_a2, author = {A. G. Eliseev and P. V. Kirichenko}, title = {Construction of regularized asymptotics for the solution of a singularly perturbed mixed problem on the half-axis for the inhomogeneous {Schr\"odinger-type} equation with the potential $V(x)=x$}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {27--43}, publisher = {mathdoc}, volume = {231}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a2/} }
TY - JOUR AU - A. G. Eliseev AU - P. V. Kirichenko TI - Construction of regularized asymptotics for the solution of a singularly perturbed mixed problem on the half-axis for the inhomogeneous Schr\"odinger-type equation with the potential $V(x)=x$ JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 27 EP - 43 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_231_a2/ LA - ru ID - INTO_2024_231_a2 ER -
%0 Journal Article %A A. G. Eliseev %A P. V. Kirichenko %T Construction of regularized asymptotics for the solution of a singularly perturbed mixed problem on the half-axis for the inhomogeneous Schr\"odinger-type equation with the potential $V(x)=x$ %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 27-43 %V 231 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_231_a2/ %G ru %F INTO_2024_231_a2
A. G. Eliseev; P. V. Kirichenko. Construction of regularized asymptotics for the solution of a singularly perturbed mixed problem on the half-axis for the inhomogeneous Schr\"odinger-type equation with the potential $V(x)=x$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 27-43. http://geodesic.mathdoc.fr/item/INTO_2024_231_a2/
[1] Arnold V. I., “O matritsakh, zavisyaschikh ot parametrov”, Usp. mat. nauk., 26:2 (158) (1971), 101–114 | MR
[2] Bobodzhanov A. A., Safonov V. F., Kurs vysshei matematiki. Singulyarno vozmuschennye uravneniya i metod regulyarizatsii, MEI, M., 2012
[3] Bobodzhanov A. A., Safonov V. F., “Regulyarizovannaya asimptotika reshenii integrodifferentsialnykh uravnenii s chastnymi proizvodnymi s bystro izmenyayuschimisya yadrami”, Ufim. mat. zh., 10:2 (2018), 3–12 | MR | Zbl
[4] Eliseev A. G., “Primer resheniya singulyarno vozmuschennoi zadachi Koshi dlya parabolicheskogo uravneniya pri nalichii «silnoi» tochki povorota”, Differ. uravn. protsessy upravl., 2022, no. 3, 46–58 | Zbl
[5] Eliseev A. G., “Regulyarizovannoe reshenie singulyarno vozmuschennoi zadachi Koshi pri nalichii irratsionalnoi «prostoi» tochki povorota”, Differ. uravn. protsessy upravl., 2020, no. 2, 15–32 | Zbl
[6] Eliseev A. G., Kirichenko P. V., “Regulyarizovannoe asimptoticheskoe reshenie zadachi Koshi dlya neodnorodnogo uravneniya Shrëdingera v kvaziklassicheskom priblizhenii v prisutstvii «silnoi» tochki povorota u predelnogo operatora”, Differ. uravn. protsessy upravl., 2023, no. 1, 110–124
[7] Eliseev A. G., Kirichenko P. V., “Reshenie singulyarno vozmuschennoi zadacha Koshi pri nalichii «slaboi» tochki povorota u predelnogo operatora”, Sib. elektron. mat. izv., 17 (2020), 51–60 | Zbl
[8] Eliseev A. G., Kirichenko P. V., “Cingulyarno vozmuschennaya zadacha Koshi pri nalichii «slaboi» tochki povorota pervogo poryadka u predelnogo operatora s kratnym spektrom”, Differ. uravn., 58:6 (2022), 733–746 | Zbl
[9] Eliseev A. G., Lomov S. A., “Teoriya singulyarnykh vozmuschenii v sluchae spektralnykh osobennostei predelnogo operatora”, Mat. sb., 131:173 (1986), 544–557 | Zbl
[10] Eliseev A. G., Ratnikova T. A., “Singulyarno vozmuschennaya zadacha Koshi pri nalichii ratsionalnoi «prostoi» tochki povorota”, Differ. uravn. protsessy upravl., 2019, no. 3, 63–73 | Zbl
[11] Kirichenko P. V., “Singulyarno vozmuschennaya zadacha Koshi dlya parabolicheskogo uravneniya pri nalichii «slaboi» tochki povorota u predelnogo operatora”, Mat. zametki SVFU., no. 3, 3–15 | MR
[12] Landau L. D., Lifshits E. M., Kurs teoreticheskoi fiziki. T. 3. Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 2008 | MR
[13] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981
[14] Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, MGU, M., 2011
[15] Lomov S. A., Safonov V. F., “Regulyarizatsii i asimptoticheskie resheniya dlya singulyarno vozmuschennykh zadach s tochechnymi osobennostyami spektra predelnogo operatora”, Ukr. mat. zh., 36:2 (1984), 172–180 | MR | Zbl
[16] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR
[17] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969
[18] Liouville J., “Second mémoire sur le développement des fonctions ou parties de functions en séries dont les divers termes sont assujétis á satisfaire á une même équation différentielle du second ordre, contenant un paramétre variable”, J. Math. Pures Appl., 1837, 16–35