Linear conjugation problem for the Cauchy--Riemann equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 115-123
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, a general solution of the Cauchy–Riemann equation with strong singularities in the lowest coefficient is constructed and the boundary-value problem of linear conjugation in a domain with a piecewise smooth boundary is examined.
Mots-clés :
Cauchy–Riemann equations
Keywords: strong singularity, Pompeiu–Vekua operator, piecewise smooth boundary, linear conjugation problem
Keywords: strong singularity, Pompeiu–Vekua operator, piecewise smooth boundary, linear conjugation problem
@article{INTO_2024_231_a11,
author = {A. B. Rasulov and N. V. Yakivchik},
title = {Linear conjugation problem for the {Cauchy--Riemann} equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {115--123},
publisher = {mathdoc},
volume = {231},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a11/}
}
TY - JOUR AU - A. B. Rasulov AU - N. V. Yakivchik TI - Linear conjugation problem for the Cauchy--Riemann equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 115 EP - 123 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_231_a11/ LA - ru ID - INTO_2024_231_a11 ER -
%0 Journal Article %A A. B. Rasulov %A N. V. Yakivchik %T Linear conjugation problem for the Cauchy--Riemann equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 115-123 %V 231 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_231_a11/ %G ru %F INTO_2024_231_a11
A. B. Rasulov; N. V. Yakivchik. Linear conjugation problem for the Cauchy--Riemann equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 115-123. http://geodesic.mathdoc.fr/item/INTO_2024_231_a11/