Linear conjugation problem for the Cauchy--Riemann equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 115-123

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, a general solution of the Cauchy–Riemann equation with strong singularities in the lowest coefficient is constructed and the boundary-value problem of linear conjugation in a domain with a piecewise smooth boundary is examined.
Mots-clés : Cauchy–Riemann equations
Keywords: strong singularity, Pompeiu–Vekua operator, piecewise smooth boundary, linear conjugation problem
@article{INTO_2024_231_a11,
     author = {A. B. Rasulov and N. V. Yakivchik},
     title = {Linear conjugation problem for the {Cauchy--Riemann} equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {115--123},
     publisher = {mathdoc},
     volume = {231},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a11/}
}
TY  - JOUR
AU  - A. B. Rasulov
AU  - N. V. Yakivchik
TI  - Linear conjugation problem for the Cauchy--Riemann equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 115
EP  - 123
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_231_a11/
LA  - ru
ID  - INTO_2024_231_a11
ER  - 
%0 Journal Article
%A A. B. Rasulov
%A N. V. Yakivchik
%T Linear conjugation problem for the Cauchy--Riemann equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 115-123
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_231_a11/
%G ru
%F INTO_2024_231_a11
A. B. Rasulov; N. V. Yakivchik. Linear conjugation problem for the Cauchy--Riemann equation with a strong singularity in the lowest coefficient in a domain with piecewise smooth boundary. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 115-123. http://geodesic.mathdoc.fr/item/INTO_2024_231_a11/