$l$-Problem of moments in problems of optimal control and state estimation for multidimensional fractional linear systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 107-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider multidimensional dynamical systems whose states are described by systems of linear fractional differential equations of different order. We examine problems of optimal control and optimal state estimation for systems with the Caputo and Riemann–Liouville fractional differentiation operators. We prove that under certain conditions both problems can be reduced to the $l$-problem of moments. For the resulting problem, the solvability conditions are verified and, in a number of cases, exact solutions are constructed.
Keywords: optimal control, dynamical system, fractional dynamics, fractional derivative, $l$-problem of moments
Mots-clés : optimal estimation
@article{INTO_2024_231_a10,
     author = {S. S. Postnov},
     title = {$l${-Problem} of moments in problems of optimal control and state estimation for multidimensional fractional linear systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {107--114},
     publisher = {mathdoc},
     volume = {231},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a10/}
}
TY  - JOUR
AU  - S. S. Postnov
TI  - $l$-Problem of moments in problems of optimal control and state estimation for multidimensional fractional linear systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 107
EP  - 114
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_231_a10/
LA  - ru
ID  - INTO_2024_231_a10
ER  - 
%0 Journal Article
%A S. S. Postnov
%T $l$-Problem of moments in problems of optimal control and state estimation for multidimensional fractional linear systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 107-114
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_231_a10/
%G ru
%F INTO_2024_231_a10
S. S. Postnov. $l$-Problem of moments in problems of optimal control and state estimation for multidimensional fractional linear systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 107-114. http://geodesic.mathdoc.fr/item/INTO_2024_231_a10/

[1] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[3] Kubyshkin V. A., Postnov S. S., “Zadacha optimalnogo upravleniya lineinoi statsionarnoi sistemoi drobnogo poryadka v forme problemy momentov: postanovka i issledovanie”, Avtomat. telemekh., 2014, no. 5, 3–17 | Zbl

[4] Postnov S. S., “Ob ispolzovanii metoda momentov dlya optimalnogo otsenivaniya sostoyaniya sistem drobnogo poryadka s vozmuscheniem impulsnogo tipa”, Probl. mat. anal., 2023, no. 121, 93–102

[5] Bourdin L., “Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems”, Differ. Integral Equations., 31:7–8 (2018), 559–594 | MR | Zbl

[6] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl