Periodic solutions of a differential equation with relay nonlinearity with delay
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
For one class of second-order differential equations with relay nonlinearity and delay, orbitally stable periodic solutions are found by means of the recurrence operator, which is a suspension over some one-dimensional mapping. The analysis of this one-dimensional mapping shows that there exist domains of parameters for which exponentially orbitally stable periodic solutions exist.
Keywords:
differential equation with delay, recurrence operator, stability
@article{INTO_2024_231_a0,
author = {D. D. Bain},
title = {Periodic solutions of a differential equation with relay nonlinearity with delay},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {3--12},
publisher = {mathdoc},
volume = {231},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a0/}
}
TY - JOUR AU - D. D. Bain TI - Periodic solutions of a differential equation with relay nonlinearity with delay JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2024 SP - 3 EP - 12 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2024_231_a0/ LA - ru ID - INTO_2024_231_a0 ER -
%0 Journal Article %A D. D. Bain %T Periodic solutions of a differential equation with relay nonlinearity with delay %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2024 %P 3-12 %V 231 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2024_231_a0/ %G ru %F INTO_2024_231_a0
D. D. Bain. Periodic solutions of a differential equation with relay nonlinearity with delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2024_231_a0/