Periodic solutions of a differential equation with relay nonlinearity with delay
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

For one class of second-order differential equations with relay nonlinearity and delay, orbitally stable periodic solutions are found by means of the recurrence operator, which is a suspension over some one-dimensional mapping. The analysis of this one-dimensional mapping shows that there exist domains of parameters for which exponentially orbitally stable periodic solutions exist.
Keywords: differential equation with delay, recurrence operator, stability
@article{INTO_2024_231_a0,
     author = {D. D. Bain},
     title = {Periodic solutions of a differential equation with relay nonlinearity with delay},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {231},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2024_231_a0/}
}
TY  - JOUR
AU  - D. D. Bain
TI  - Periodic solutions of a differential equation with relay nonlinearity with delay
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2024
SP  - 3
EP  - 12
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2024_231_a0/
LA  - ru
ID  - INTO_2024_231_a0
ER  - 
%0 Journal Article
%A D. D. Bain
%T Periodic solutions of a differential equation with relay nonlinearity with delay
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2024
%P 3-12
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2024_231_a0/
%G ru
%F INTO_2024_231_a0
D. D. Bain. Periodic solutions of a differential equation with relay nonlinearity with delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 2, Tome 231 (2024), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2024_231_a0/

[1] Kaschenko S. A., “Sravnitelnyi asimptoticheskii analiz dinamiki avtogeneratorov s razlichnymi nelineinymi zapazdyvayuschimi svyazyami”, Fundam. prikl. mat., 5:4 (1999), 1027–1060 | MR | Zbl

[2] Dmitriev A. S., Kaschenko S. A., “Asimptotika neregulyarnykh kolebanii v modeli avtogeneratora s zapazdyvayuschei obratnoi svyazyu”, Dokl. RAN., 328:2 (1993), 174–177 | MR | Zbl

[3] Kaschenko S. A., “Asimptotika relaksatsionnykh kolebanii v sistemakh differentsialno-raznostnykh uravnenii s finitnoi nelineinostyu. I”, Differ. uravn., 31:8 (1995), 1330–1339 | MR | Zbl

[4] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v koltsevykh tsepochkakh odnonapravlenno svyazannykh generatorov”, Izv. RAN. Ser. mat., 78:4 (2014), 73–108 | DOI | MR | Zbl

[5] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Rele s zapazdyvaniem i ego $C^1$-approksimatsiya”, Tr. Mat. in-ta im. V. A. Steklova RAN., 216 (1997), 126–153 | Zbl