Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_230_a6, author = {A. N. Kulikov and D. A. Kulikov}, title = {The influence of delay and spatial factors on the dynamics of solutions in the mathematical model ``supply-demand''}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {75--87}, publisher = {mathdoc}, volume = {230}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a6/} }
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov TI - The influence of delay and spatial factors on the dynamics of solutions in the mathematical model ``supply-demand'' JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 75 EP - 87 VL - 230 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_230_a6/ LA - ru ID - INTO_2023_230_a6 ER -
%0 Journal Article %A A. N. Kulikov %A D. A. Kulikov %T The influence of delay and spatial factors on the dynamics of solutions in the mathematical model ``supply-demand'' %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 75-87 %V 230 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_230_a6/ %G ru %F INTO_2023_230_a6
A. N. Kulikov; D. A. Kulikov. The influence of delay and spatial factors on the dynamics of solutions in the mathematical model ``supply-demand''. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 75-87. http://geodesic.mathdoc.fr/item/INTO_2023_230_a6/
[1] Agapova T. A., Seregina C. F., Makroekonomika, Delo i servis, M., 2004
[2] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978
[3] Kondratev N. D., Osoboe mnenie, Nauka, M., 1993
[4] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, ed. Kolesov Yu. S., YarGU, Yaroslavl, 1976, 114–129
[5] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii ploskikh beguschikh voln obobschennogo kubicheskogo uravneniya Shrëdingera”, Differ. uravn., 46:9 (2010), 1290–1299 | MR | Zbl
[6] Kulikov D. A., “Effekt zapazdyvaniya i ekonomicheskie tsikly”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 217 (2022), 41–50 | DOI | MR
[7] Lebedev V. V., Lebedev K. V., Matematicheskoe modelirovanie nestatsionarnykh protsessov, eTect, M., 2011
[8] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[9] Guckenheimer J., Holmes P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983 | MR | Zbl
[10] Hale J., Theory of Functional Differential Equations, Springer-Verlag, Berlin, 1977 | MR | Zbl
[11] Marsden J. E., McCraken M., The Hopf Bifurcations and Its Applications, Springer, New York, 1976 | MR
[12] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, Berlin, 1997 | MR | Zbl
[13] Radin M. A., Kulikov A. N., Kulikov D. A., “The influence of spatial effects on the dynamics of solutions in Keynes' mathematical model of the business cycle”, Nonlin. Dyn. Psychol. Life Sci., 26:4 (2022), 441–463 | MR
[14] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991 | MR | Zbl