Uniqueness theorem for one class of pseudodifferential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 50-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniqueness of solutions for homogeneous equations in the class of analytic functionals $Z'(\mathbb{R}^n)$ with pseudodifferential operators commuting under shifts is discussed. We establish conditions for the symbols of operators that allow one to partition this class of operators into equivalence classes in such a way that within each class, any condition of the regularity of solutions at infinity that guarantees the uniqueness of a solution for an equation with some representative of this class, also guarantees the uniqueness of a solution for equations with all representatives of the same class.
Keywords: pseudo-differential equation, uniqueness of solution
Mots-clés : equivalence
@article{INTO_2023_230_a4,
     author = {Yu. V. Zasorin},
     title = {Uniqueness theorem for one class of pseudodifferential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--55},
     publisher = {mathdoc},
     volume = {230},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a4/}
}
TY  - JOUR
AU  - Yu. V. Zasorin
TI  - Uniqueness theorem for one class of pseudodifferential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 50
EP  - 55
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_230_a4/
LA  - ru
ID  - INTO_2023_230_a4
ER  - 
%0 Journal Article
%A Yu. V. Zasorin
%T Uniqueness theorem for one class of pseudodifferential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 50-55
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_230_a4/
%G ru
%F INTO_2023_230_a4
Yu. V. Zasorin. Uniqueness theorem for one class of pseudodifferential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 50-55. http://geodesic.mathdoc.fr/item/INTO_2023_230_a4/

[4] Zasorin Yu. V., “O teoremakh edinstvennosti dlya uravnenii v chastnykh proizvodnykh i universalnosti usloviya regulyarnosti resheniya na beskonechnosti”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2021, no. 3, 48–58 | MR

[5] Zasorin Yu. V., “O korrektnoi razreshimosti zadach Koshi dlya nestatsionarnykh uravnenii s nevydelennoi starshei proizvodnoi po vremeni i opredelenii sleda raspredeleniya na giperploskosti nachalnykh dannykh”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 191 (2021), 47–73 | DOI

[6] Zasorin Yu. V., “Metod perenormirovki potentsiala dlya odnoi modeli tipa Khartri—Foka—Sleitera”, Teor. mat. fiz., 130:3 (2002), 375–382 | MR | Zbl

[7] Zasorin Yu. V., “Metod multipolnogo psevdopotentsiala dlya nekotorykh zadach kvantovoi teorii rasseyaniya”, Teor. mat. fiz., 135:3 (2003), 504–514 | DOI | MR | Zbl

[8] Khermander L., K teorii obschikh differentsialnykh operatorov v chastnykh proizvodnykh, IL, M., 1959

[9] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965

[10] Hörmander L., “Lower bounds at infinity for solutions of differential equations with constsnt coefficients”, Isr. J. Math., 16 (1973), 103–116 | DOI | MR | Zbl