On the algebra of integral operators with involution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 41-49
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider integral operators with kernels depending on the sum and difference of arguments in the space $L_p(\mathbb{R})$, $p\in[1, \infty)$. We prove that such operators form a subalgebra of the algebra of bounded linear operators. The study of operators with kernels depending on the difference of arguments was carried out using Banach $L_1(\mathbb{Z})$-modules. The differences and similarities between the subalgebra of integral operators and the corresponding subalgebra of difference operators with involution are noted.
Keywords:
integral operator, involution, Banach module, difference operator, spectrum
Mots-clés : semi-Carleman kernel, convolution
Mots-clés : semi-Carleman kernel, convolution
@article{INTO_2023_230_a3,
author = {A. G. Baskakov and G. V. Garkavenko and N. B. Uskova},
title = {On the algebra of integral operators with involution},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {41--49},
publisher = {mathdoc},
volume = {230},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/}
}
TY - JOUR AU - A. G. Baskakov AU - G. V. Garkavenko AU - N. B. Uskova TI - On the algebra of integral operators with involution JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 41 EP - 49 VL - 230 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/ LA - ru ID - INTO_2023_230_a3 ER -
%0 Journal Article %A A. G. Baskakov %A G. V. Garkavenko %A N. B. Uskova %T On the algebra of integral operators with involution %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 41-49 %V 230 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/ %G ru %F INTO_2023_230_a3
A. G. Baskakov; G. V. Garkavenko; N. B. Uskova. On the algebra of integral operators with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/