On the algebra of integral operators with involution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider integral operators with kernels depending on the sum and difference of arguments in the space $L_p(\mathbb{R})$, $p\in[1, \infty)$. We prove that such operators form a subalgebra of the algebra of bounded linear operators. The study of operators with kernels depending on the difference of arguments was carried out using Banach $L_1(\mathbb{Z})$-modules. The differences and similarities between the subalgebra of integral operators and the corresponding subalgebra of difference operators with involution are noted.
Keywords: integral operator, involution, Banach module, difference operator, spectrum
Mots-clés : semi-Carleman kernel, convolution
@article{INTO_2023_230_a3,
     author = {A. G. Baskakov and G. V. Garkavenko and N. B. Uskova},
     title = {On the algebra of integral operators with involution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {230},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - G. V. Garkavenko
AU  - N. B. Uskova
TI  - On the algebra of integral operators with involution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 41
EP  - 49
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/
LA  - ru
ID  - INTO_2023_230_a3
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A G. V. Garkavenko
%A N. B. Uskova
%T On the algebra of integral operators with involution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 41-49
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/
%G ru
%F INTO_2023_230_a3
A. G. Baskakov; G. V. Garkavenko; N. B. Uskova. On the algebra of integral operators with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/

[1] Aleksandrov E. L., “O spektralnykh funktsiyakh odnogo integralnogo operatora s yadrom Karlemana”, Izv. vuzov. Mat., 1969, no. 7, 3–12

[2] Aleksandrov E. L., Kirichenko B. I., “Integralnye operatory Karlemana s yadrami, zavisyaschimi ot raznosti i summy argumentov”, Sib. mat. zh., 18:1 (1977), 3–22 | Zbl

[3] Aleksandrov E. L., Kirichenko B. I., “O spektralnykh funktsiyakh integralnykh operatorov Karlemana s yadrami, zavisyaschimi ot raznosti i summy argumentov”, Sib. mat. zh., 19:6 (1978), 1219–1231 | MR

[4] Aleksandrov E. L., Kirichenko B. I., “Kharakteristicheskie svoistva $(SC)$-operatorov s yadrami, zavisyaschimi ot raznosti argumentov”, Sib. mat. zh., 20:5 (1979), 931–941 | MR

[5] Aleksandrov E. L., “Kharakteristicheskie svoistva polukarlemanovskikh operatorov s yadrami vida $k(x-y)+h(x+y)$”, Mat. zametki., 36:2 (1984), 189–200 | MR | Zbl

[6] Aleksandrov E. L., “Spektralnye svoistva operatorov s yadrami, zavisyaschimi ot raznosti i summy argumentov”, Izv. vuzov. Mat., 8 (1991), 3–8

[7] Aleksandrov E. L., “Spektralnye funktsii samosopryazhennykh i simmetricheskikh operatorov umnozheniya v prostranstvakh $L^2(X, \mu)$”, Mat. zametki., 67:6 (2000), 803–810 | DOI | Zbl

[8] Andreev A. A., Shindin I. P., “O korrektnosti granichnykh zadach dlya odnogo differentsialnogo uravneniya v chastnykh proizvodnykh s otklonyayuschimsya argumentom”, Analiticheskie metody v teorii differentsialnykh i integralnykh uravnenii, KGU, Kuibyshev, 1987, 3–6

[9] Andreev A. A., Ogorodnikov E. N., “O korrektnosti nachalnykh kraevykh zadach dlya odnogo giperbolicheskogo uravneniya s vyrozhdeniem poryadka i involyutivnym otkloneniem”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 2000, no. 9, 32–36 | DOI

[10] Baskakov A. G., Krishtal I. A., “Garmonicheskii analiz kauzalnykh operatorov i ikh spektralnye svoistva”, Izv. RAN. Ser. mat., 69:3 (2005), 3–54 | DOI | MR | Zbl

[11] Baskakov A. G., Garkavenko G. V., Uskova N. B., “Spektralnye svoistva raznostnykh operatorov s involyutsiei”, Tr. Mezhdunar. nauch. konf. BBAktualnye problemy prikladnoi matematiki, informatiki i mekhanikiYuYu (Voronezh, 4-6 dekabrya 2023 g.), VGU, Voronezh, 2023, 7–11

[12] Baskakov A. G., “Otsenki elementov obratnykh matrits i spektralnyi analiz lineinykh operatorov”, Izv. RAN. Ser. mat., 61:6 (1997), 3–26 | DOI | MR | Zbl

[13] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Sovr. mat. Fundam. napr., 9 (2004), 3–151 | Zbl

[14] Baskakov A. G., “Neravenstva bernshteinovskogo tipa v abstraktnom garmonicheskom analize”, Sib. mat. zh., 20:5 (1979), 942–952 | MR | Zbl

[15] Burlutskaya M. Sh., Voprosy spektralnoi teorii dlya operatorov s involyutsiei i prilozheniya, Nauchnaya kniga, Voronezh, 2020

[16] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN., 414:4 (2007), 443–446 | MR | Zbl

[17] Vladykina V. E., Shkalikov A. A., “Spektralnye svoistva obyknovennykh differentsialnykh operatorov s involyutsiei”, Dokl. RAN., 484:1 (2019), 12–17 | DOI | MR | Zbl

[18] Karapetyants N. K., Samko S. G., Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1988 | MR

[19] Kritskov L. V., Sarsenbi A. M., “Bazisnost Rissa sistemy kornevykh funktsii dlya operatorov vtorogo poryadka s involyutsiei”, Differ. uravn., 53:1 (2017), 35–48 | DOI | Zbl

[20] Krishtal I. A., Uskova N. B., “Spektralnye svoistva differentsialnykh operatorov pervogo poryadka s involyutsiei i gruppy operatorov”, Sib. elektron. mat. izv., 16 (2019), 1091–1132 | Zbl

[21] Palchikov A. N., “Spektralnyi analiz integralnykh operatorov s yadrom, zavisyaschim ot raznosti i summy argumentov”, Izv. vuzov. Mat., 1990, no. 3, 80–83 | MR | Zbl

[22] Khromov A. P., Kuvardina L. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnogo operatora s involyutsiei”, Izv. vuzov. Mat., 2008, no. 5, 67–76 | Zbl

[23] Baskakov A. G., Krishtal I. A., “Memory estimation of inverse operators”, J. Funct. Anal., 267 (2014), 2551–2605 | DOI | MR | Zbl

[24] Baskakov A. G., Krishtal I. A., Uskova N. B., “Closed operator functional calculus in Banach modules and applications”, J. Math. Anal. Appl., 492:2 (2020), 124473 | DOI | MR

[25] Carleman P., “Sur la théorie des équations intégrales lineaires et ses applications”, Verh. Int. Math.-Kongr., 1 (1932), 138–151 | MR | Zbl

[26] Carleman T., Sur les équations intégrales singulières à noyau réel et symétrique, Uppsala Univ. Årsskrift, 1923

[27] Loomis L. H., An Introduction of Abstract Harmonic Analysis, Van Nostrand, Toronto–New York–London, 1953 | MR

[28] Reiter H., Stegeman J. D., Classical Harmonic Analysis and Locally Compact Groups, Oxford Univ. Press, Oxford–London, 2000 | MR | Zbl

[29] Schreiber M., “Semi-Carleman operators”, Acta Sci. Math., 24 (1963), 82–86 | MR