On the algebra of integral operators with involution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 41-49

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider integral operators with kernels depending on the sum and difference of arguments in the space $L_p(\mathbb{R})$, $p\in[1, \infty)$. We prove that such operators form a subalgebra of the algebra of bounded linear operators. The study of operators with kernels depending on the difference of arguments was carried out using Banach $L_1(\mathbb{Z})$-modules. The differences and similarities between the subalgebra of integral operators and the corresponding subalgebra of difference operators with involution are noted.
Keywords: integral operator, involution, Banach module, difference operator, spectrum
Mots-clés : semi-Carleman kernel, convolution
@article{INTO_2023_230_a3,
     author = {A. G. Baskakov and G. V. Garkavenko and N. B. Uskova},
     title = {On the algebra of integral operators with involution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {230},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - G. V. Garkavenko
AU  - N. B. Uskova
TI  - On the algebra of integral operators with involution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 41
EP  - 49
VL  - 230
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/
LA  - ru
ID  - INTO_2023_230_a3
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A G. V. Garkavenko
%A N. B. Uskova
%T On the algebra of integral operators with involution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 41-49
%V 230
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/
%G ru
%F INTO_2023_230_a3
A. G. Baskakov; G. V. Garkavenko; N. B. Uskova. On the algebra of integral operators with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Tome 230 (2023), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2023_230_a3/