Relationships between the best uniform polynomial approximations of functions and their even and odd prolongations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 3, Tome 229 (2023), pp. 47-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the relationships between the best uniform polynomial approximations of a continuous function on an interval and its even and odd prolongations. We consider examples that demonstrate the accuracy of the results obtained. Similar issues are also discussed for rational approximations.
Keywords: best uniform polynomial approximation, best uniform rational approximation, even continuation of a function, odd continuation of a function, Jackson's inequality.
@article{INTO_2023_229_a5,
     author = {T. S. Mardvilko},
     title = {Relationships between the best uniform polynomial approximations of functions and their even and odd prolongations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {47--52},
     publisher = {mathdoc},
     volume = {229},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_229_a5/}
}
TY  - JOUR
AU  - T. S. Mardvilko
TI  - Relationships between the best uniform polynomial approximations of functions and their even and odd prolongations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 47
EP  - 52
VL  - 229
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_229_a5/
LA  - ru
ID  - INTO_2023_229_a5
ER  - 
%0 Journal Article
%A T. S. Mardvilko
%T Relationships between the best uniform polynomial approximations of functions and their even and odd prolongations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 47-52
%V 229
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_229_a5/
%G ru
%F INTO_2023_229_a5
T. S. Mardvilko. Relationships between the best uniform polynomial approximations of functions and their even and odd prolongations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 3, Tome 229 (2023), pp. 47-52. http://geodesic.mathdoc.fr/item/INTO_2023_229_a5/

[1] Ibragimov I. I., “O nailuchshem priblizhenii mnogochlenami funktsii $[ax+b|x|]|x|^s$ na otrezke $[-1,1]$”, Izv. AN SSSR. Ser. mat., 14:5 (1950), 405–412 | Zbl

[2] Mardvilko T. S., Pekarskii A. A., “Primenenie deistvitelnogo prostranstva Khardi—Soboleva na pryamoi dlya issledovaniya skorosti ravnomernykh ratsionalnykh priblizhenii funktsii”, Zh. Belorus. gos. un-ta. Mat. Inform., 2022, 16–36 | MR

[3] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, GIFML, M., 1960

[4] Bustamante J., Algebraic Approximation: A Guide to Past and Current Solutions, Springer, Basel AG, 2012 | MR