On bounded difference operators with involution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 3, Tome 229 (2023), pp. 12-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we considers difference operators of a special type (with involution) whose infinite matrix has two nonzero diagonals. We introduce the notion of an abstract involution operator and examine its such as invertibility, spectrum, and commutability condition. Also, we discuss the problem of whether the original operator and its inverse belong to special operator classes.
Keywords: difference operator, involution, abstract involution, spectrum, invertibility, commutability
@article{INTO_2023_229_a1,
     author = {A. G. Baskakov and G. V. Garkavenko and N. B. Uskova},
     title = {On bounded difference operators with involution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {12--21},
     publisher = {mathdoc},
     volume = {229},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_229_a1/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - G. V. Garkavenko
AU  - N. B. Uskova
TI  - On bounded difference operators with involution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 12
EP  - 21
VL  - 229
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_229_a1/
LA  - ru
ID  - INTO_2023_229_a1
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A G. V. Garkavenko
%A N. B. Uskova
%T On bounded difference operators with involution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 12-21
%V 229
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_229_a1/
%G ru
%F INTO_2023_229_a1
A. G. Baskakov; G. V. Garkavenko; N. B. Uskova. On bounded difference operators with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 3, Tome 229 (2023), pp. 12-21. http://geodesic.mathdoc.fr/item/INTO_2023_229_a1/

[1] Baskakov A. G., “Abstraktnyi garmonicheskii analiz i asimptoticheskie otsenki elementov obratnykh matrits”, Mat. zametki., 52:2 (1992), 17–26 | Zbl

[2] Baskakov A. G., “Otsenki elementov obratnykh matrits i spektralnyi analiz lineinykh operatorov”, Izv. RAN. Ser. mat., 61:6 (1997), 3–26 | DOI | MR | Zbl

[3] Baskakov A. G., Garkavenko G. V., Uskova N. B., “O matritsakh s summiruemymi diagonalyami”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 194, 23–37 | DOI

[4] Baskakov A. G., Krishtal I. A., Uskova N. B., “Metod podobnykh operatorov v spektralnom analize operatornykh beskonechnykh matrits”, Prikl. mat. fiz., 52:2 (2020), 71–85 | DOI | MR

[5] Broitigam I. N., Polyakov D. M., “Asimptotika sobstvennykh znachenii beskonechnykh blochnykh matrits”, Ufim. mat. zh., 11:3 (2019), 10–29 | Zbl

[6] Burbaki N., Spektralnaya teoriya, Mir, M., 1972

[7] Burlutskaya M. Sh., Voprosy spektralnoi teorii dlya operatorov s involyutsiei i prilozheniya, Nauchnaya kniga, Voronezh, 2020

[8] Burlutskaya M. Sh., “Nekotorye svoistva funktsionalno-differentsialnykh operatorov s involyutsiei $\nu(x)=1-x$ i ikh prilozheniya”, Izv. vuzov. Mat., 2021, no. 5, 89–97 | MR | Zbl

[9] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN., 414:4 (2007), 443–446 | MR | Zbl

[10] Vladykina V. E., Shkalikov A. A., “Spektralnye svoistva obyknovennykh differentsialnykh operatorov s involyutsiei”, Dokl. RAN., 484:1 (2019), 12–17 | DOI | MR | Zbl

[11] Garkavenko G. V., Uskova N. B., “O spektralnykh svoistvakh odnoi trekhdiagonalnoi beskonechnoi matritsy”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 199 (2021), 31–42 | DOI | MR

[12] Garkavenko G. V., Uskova N. B., “O spektralnykh svoistvakh odnogo raznostnogo operatora s involyutsiei”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 208 (2022), 15–23 | DOI | MR

[13] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[14] Kritskov L. V., Sarsenbi A. M., “Bazisnost Rissa sistemy kornevykh funktsii differentsialnogo operatora vtorogo poryadka s involyutsiei”, Differ. uravn., 53:1 (2017), 35–48 | DOI | Zbl

[15] Palchikov A. N., “Spektralnyi analiz integralnykh operatorov s yadrom, zavisyaschim ot raznosti i summy argumentov”, Izv. vuzov. Mat., 1990, no. 3, 80–83 | MR | Zbl

[16] Khromov A. P., Kuvardina L. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnogo operatora s involyutsiei”, Izv. vuzov. Mat., 2008, no. 5, 67–76 | Zbl

[17] Baskakov A. G., Krishtal I. A., Uskova N. B., “Similarity techniques in the spectral analysis of perturbed operator matrices”, J. Math. Anal. Appl., 477:2 (2019), 930–960 | DOI | MR

[18] Baskakov A. G., Krishtal I. A., Uskova N. B., “On the spectral analysis of a differential operator with an involution and general boundary conditions”, Eurasian Math. J., 11:2 (2020), 30–39 | DOI | MR | Zbl

[19] Boutet de Monvel A., Zielinski L., “Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices”, Cent. Eur. J. Math., 12:3 (2014), 445–463 | MR | Zbl

[20] Malejki M., “Eigenvalues for some complex infinite matrices”, J. Adv. Math. Comp. Sci., 26:5 (2018), 1–9 | DOI