On optimal linear regression for fuzzy random variables
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 85-91

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct an optimal linear regression of fuzzy random variables whose coefficients are similar to the case of “ordinary” random variables. We prove under certain conditions, the optimal regression has a maximum correlation coefficient with the predicted fuzzy random value.
Keywords: fuzzy random variables, optimal linear regression
@article{INTO_2023_228_a6,
     author = {V. L. Khatskevich},
     title = {On optimal linear regression for fuzzy random variables},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {85--91},
     publisher = {mathdoc},
     volume = {228},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_228_a6/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - On optimal linear regression for fuzzy random variables
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 85
EP  - 91
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_228_a6/
LA  - ru
ID  - INTO_2023_228_a6
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T On optimal linear regression for fuzzy random variables
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 85-91
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_228_a6/
%G ru
%F INTO_2023_228_a6
V. L. Khatskevich. On optimal linear regression for fuzzy random variables. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 85-91. http://geodesic.mathdoc.fr/item/INTO_2023_228_a6/