Recovery of the Laplace--Bessel operator of a function by the spectrum, which is specified not everywhere
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 52-57

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present results related to the problem of the best recovery of a fractional power of the $B$-elliptic Laplace–Bessel operator of a smooth function from its Fourier–Bessel transform, which is known exactly or approximately on a certain convex set. The cases of primary estimates in $L_2^\gamma$ and $L_\infty$ are considered.
Keywords: Bessel operator, optimal recovery, extremal problem
Mots-clés : Fourier–Bessel transform
@article{INTO_2023_228_a4,
     author = {S. M. Sitnik and M. V. Polovinkina and V. E. Fedorov and I. P. Polovinkin},
     title = {Recovery of the {Laplace--Bessel} operator of a function by the spectrum, which is specified not everywhere},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {52--57},
     publisher = {mathdoc},
     volume = {228},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_228_a4/}
}
TY  - JOUR
AU  - S. M. Sitnik
AU  - M. V. Polovinkina
AU  - V. E. Fedorov
AU  - I. P. Polovinkin
TI  - Recovery of the Laplace--Bessel operator of a function by the spectrum, which is specified not everywhere
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 52
EP  - 57
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_228_a4/
LA  - ru
ID  - INTO_2023_228_a4
ER  - 
%0 Journal Article
%A S. M. Sitnik
%A M. V. Polovinkina
%A V. E. Fedorov
%A I. P. Polovinkin
%T Recovery of the Laplace--Bessel operator of a function by the spectrum, which is specified not everywhere
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 52-57
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_228_a4/
%G ru
%F INTO_2023_228_a4
S. M. Sitnik; M. V. Polovinkina; V. E. Fedorov; I. P. Polovinkin. Recovery of the Laplace--Bessel operator of a function by the spectrum, which is specified not everywhere. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 52-57. http://geodesic.mathdoc.fr/item/INTO_2023_228_a4/