Recovery of the Laplace--Bessel operator of a function by the spectrum, which is specified not everywhere
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 52-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present results related to the problem of the best recovery of a fractional power of the $B$-elliptic Laplace–Bessel operator of a smooth function from its Fourier–Bessel transform, which is known exactly or approximately on a certain convex set. The cases of primary estimates in $L_2^\gamma$ and $L_\infty$ are considered.
Keywords: Bessel operator, optimal recovery, extremal problem
Mots-clés : Fourier–Bessel transform
@article{INTO_2023_228_a4,
     author = {S. M. Sitnik and M. V. Polovinkina and V. E. Fedorov and I. P. Polovinkin},
     title = {Recovery of the {Laplace--Bessel} operator of a function by the spectrum, which is specified not everywhere},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {52--57},
     publisher = {mathdoc},
     volume = {228},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_228_a4/}
}
TY  - JOUR
AU  - S. M. Sitnik
AU  - M. V. Polovinkina
AU  - V. E. Fedorov
AU  - I. P. Polovinkin
TI  - Recovery of the Laplace--Bessel operator of a function by the spectrum, which is specified not everywhere
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 52
EP  - 57
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_228_a4/
LA  - ru
ID  - INTO_2023_228_a4
ER  - 
%0 Journal Article
%A S. M. Sitnik
%A M. V. Polovinkina
%A V. E. Fedorov
%A I. P. Polovinkin
%T Recovery of the Laplace--Bessel operator of a function by the spectrum, which is specified not everywhere
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 52-57
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_228_a4/
%G ru
%F INTO_2023_228_a4
S. M. Sitnik; M. V. Polovinkina; V. E. Fedorov; I. P. Polovinkin. Recovery of the Laplace--Bessel operator of a function by the spectrum, which is specified not everywhere. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 52-57. http://geodesic.mathdoc.fr/item/INTO_2023_228_a4/

[1] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnymi operatorami tipa Besselya”, Mat. sb., 36:2 (1955), 299–310

[2] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napr., 64:2 (2018), 211–426 | MR

[3] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR

[4] Kipriyanov I. A., “Preobrazovanie Fure—Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. Mat. in-ta im. V. A. Steklova RAN., 89 (1967), 130-213 | Zbl

[5] Kipriyanov I. A., Kulikov A. A., “Teorema Peli—Vinera—Shvartsa dlya preobrazovaniya Fure—Besselya”, Dokl. AN SSSR., 298:1 (1988), 13 – 17 | Zbl

[6] Levitan B. M., “Razlozhenie v ryady i integraly Fure po funktsiyam Besselya”, Usp. mat. nauk., 6:2 (1951), 102–143 | MR | Zbl

[7] Lyakhov L. N., $B$-Gipersingulyarnye integraly i ikh prilozheniya k opisaniyu funktsionalnykh klassov Kipriyanova i k integralnym uravneniyam s $B$-potentsialnymi yadrami, LGPU, Lipetsk, 2007

[8] Magaril-Ilyaev G. G., Sivkova E. O., “Nailuchshee vosstanovlenie operatora Laplasa funktsii po ee netochno zadannomu spektru”, Mat. sb., 203:4 (2012), 119–130 | DOI | Zbl

[9] Sivkova E. O., “Ob optimalnom vosstanovlenii laplasiana funktsii po ee netochno zadannomu preobrazovaniyu Fure”, Vladikavkaz. mat. zh., 14:4 (2012), 63–72 | MR | Zbl

[10] Sitnik S. M.,Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019

[11] Muravnik A. B., “Fourier–Bessel transformation of compactly supported nonnegative functions and estimates of solutions of singular differential equations”, Funct. Differ. Equations., 8:3-4 (2001), 353–-363 | MR | Zbl

[12] Polovinkina M. V., “Recovery of the operator $\Delta_B$ from its incomplete Fourier–Bessel image”, Lobachevskii J. Math., 41:5 (2020), 839–852 | DOI | MR | Zbl

[13] Sitnik S. M., Fedorov V. E., Polovinkina M. V., Polovinkin I. P., “On recovery of the singular differential Laplace–Bessel operator from the Fourier–Bessel transform”, Mathematics., 11 (2023), 1103 | DOI