On the type of delta-subharmonic functions of generalized refined order
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 32-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In function theory, the Lindelöf theorem on zeros of entire functions is well known: A given sequence is the set of zeros of an entire function of finite order $\varrho>0$ and normal type if and only if for noninteger $\varrho$, it has a finite upper density at this order, and for integer $\varrho$, it possesses, in addition, a certain asymptotic symmetry. In this paper, we give a review of recent results relating to the extension of Lindelf̈ theorem to the case of entire functions that are analytic in the half-plane and meromorphic and subharmonic functions in the complex plane and half-plane whose is determined by the generalized refined order. Similar statements are proved for delta-subharmonic functions in the complex plane. The resulting criteria are formulated in terms of the Riesz measure functions.
Keywords: entire function, meromorphic function, subharmonic function, delta-subharmonic function, generalized refined order, type of function, Lindelöf theorem, Riesz measure, full measure
@article{INTO_2023_228_a3,
     author = {K. G. Malyutin and M. V. Kabanko},
     title = {On the type of delta-subharmonic functions of generalized refined order},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {32--51},
     publisher = {mathdoc},
     volume = {228},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_228_a3/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - M. V. Kabanko
TI  - On the type of delta-subharmonic functions of generalized refined order
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 32
EP  - 51
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_228_a3/
LA  - ru
ID  - INTO_2023_228_a3
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A M. V. Kabanko
%T On the type of delta-subharmonic functions of generalized refined order
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 32-51
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_228_a3/
%G ru
%F INTO_2023_228_a3
K. G. Malyutin; M. V. Kabanko. On the type of delta-subharmonic functions of generalized refined order. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 32-51. http://geodesic.mathdoc.fr/item/INTO_2023_228_a3/

[1] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, M., 1986

[2] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[3] Grishin A. F., “O regulyarnosti rosta subgarmonicheskikh funktsii, I”, Vestn. Kharkov. gos. un-ta im. A. M. Gorkogo., 6 (1968), 3–29 | Zbl

[4] Grishin A. F., “O regulyarnosti rosta subgarmonicheskikh funktsii, II”, Vestn. Kharkov. gos. un-ta im. A. M. Gorkogo., 7 (1968), 59–84 | Zbl

[5] Grishin A. F., “O regulyarnosti rosta subgarmonicheskikh funktsii, III”, Vestn. Kharkov. gos. un-ta im. A. M. Gorkogo., 8 (1969), 126–135 | Zbl

[6] Grishin A. F., Subgarmonicheskie funktsii konechnogo poryadka, Diss. na soisk. uch. step. doktora fiz.-mat. nauk, Kharkov, 1992

[7] Grishin A. F., Kuin N. V., Poedintseva I. V., Vestn. Kharkov. nats. un-ta. Ser. Mat., prikl. mat., mekh., 1133 (2014), 56–75 | Zbl

[8] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR

[9] Kondratyuk A. A., Ryady Fure i meromorfnye funktsii, Vischa shkola, Lvov, 1988

[10] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[11] Malyutin K. G., “Ryady Fure i $\delta$-subgarmonicheskie funktsii konechnogo $\gamma$-tipa v poluploskosti”, Mat. sb., 192:6 (2001), 51–70 | DOI | Zbl

[12] Malyutin K. G., Kozlova I. I., Sadyk N., “Kanonicheskie funktsii dopustimykh mer v poluploskosti”, Mat. zametki., 96:3 (2014), 418–431 | DOI | MR | Zbl

[13] Malyutin K. G., Sadyk N., “Predstavlenie subgarmonicheskikh funktsii v poluploskosti”, Mat. sb., 198:12 (2007), 47–62 | DOI | Zbl

[14] Privalov I. I., Subgarmonicheskie funktsii, Gostekhizdat, M.-L., 1937

[15] Rubel L. A., “Obobschennoe kanonicheskoe proizvedenie”, Sovremennye problemy teorii analiticheskikh funktsii, Nauka, M., 1965, 264–269

[16] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980

[17] Fedorov M. A., Grishin A. F., “Some questions of Nevanlinna theory for the complex half-plane”, Math. Phys. Anal. Geom., 1:3 (1998), 223–271 | MR | Zbl

[18] Grishin A. F., Malyutina T. I., “Subharmonic functions satisfying the local Levin condition”, Isr. Math. Conf. Proc., 15 (2001), 137–147 | MR | Zbl

[19] Hayman W. K., Kennedy P. B., Subharmonic Functions. Vol. I., Academic Press, London–New York–San Francisco, 1976 | MR | Zbl

[20] Lindelöf E., “Fonctions entières d'ordre entier”, Ann. Sci. Ec. Norm. Super., 41 (1905), 369–395 | DOI | MR

[21] Malyutin K. G., Kabanko M. V., Kostenko I. V., “Generalization of the Lindelöf theorem to the case of Boutroux proximate order”, J. Math. Sci., 262:3 (2022), 301–311 | DOI | MR | Zbl

[22] Malyutin K. G., Kabanko M. V., Kostenko I. V., “Generalization of the Lindelöf theorem to the case of Boutroux proximate order, II”, J. Math. Sci., 262:5 (2022), 609–616 | DOI | MR

[23] Malyutin K. G., Kabanko M. V., “On the type of subharmonic functions of finite order”, J. Math. Sci., 269:3 (2023), 301–311 | DOI | MR

[24] Malyutin K. G., Kabanko M. V., “Inverse formulas for the Fourier coefficients of meromorphic functions in a half-plane”, J. Math. Sci., 260:6 (2022), 798–806 | DOI | MR

[25] Malyutin K. G., Kabanko M. V.., Shevtsova T. V., “Analytic functions of infinite order in half-plane”, Probl. Anal. Iss. Anal., 11 (29):2 (2022), 59–71 | MR | Zbl

[26] Rubel L. A., Entire and Meromorphic Functions, Springer, New York–Berlin–Heidelbergo, 1996 | MR | Zbl

[27] Rubel L. A., Taylor B. A., “A Fourier series method for meromorphic and entire functions”, Bull. Soc. Math. Fr., 96 (1968), 53–96 | DOI | MR | Zbl

[28] Tsuji M., Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959 | MR | Zbl