Sufficient criterion for the exponential stability of a differential equation of neutral type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for the exponential stability of one differential equation of neutral type is obtained.
Mots-clés : neutral-type equation
Keywords: functional differential equation, aftereffect, stability
@article{INTO_2023_228_a0,
     author = {A. S. Balandin},
     title = {Sufficient criterion for the exponential stability of a differential equation of neutral type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {228},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_228_a0/}
}
TY  - JOUR
AU  - A. S. Balandin
TI  - Sufficient criterion for the exponential stability of a differential equation of neutral type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 3
EP  - 9
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_228_a0/
LA  - ru
ID  - INTO_2023_228_a0
ER  - 
%0 Journal Article
%A A. S. Balandin
%T Sufficient criterion for the exponential stability of a differential equation of neutral type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 3-9
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_228_a0/
%G ru
%F INTO_2023_228_a0
A. S. Balandin. Sufficient criterion for the exponential stability of a differential equation of neutral type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 2, Tome 228 (2023), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2023_228_a0/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[2] Azbelev N. V., Simonov P. M., Ustoichivost reshenii uravnenii s obyknovennymi proizvodnymi, Izd-vo Perm. un-ta, Perm, 2001

[3] Balandin A. S., “Ob asimptoticheskoi ustoichivosti odnogo klassa differentsialno-raznostnykh uravnenii”, Vestn. PGTU., 1 (2009), 122–129

[4] Balandin A. S., “O svyazi mezhdu fundamentalnym resheniem i funktsiei Koshi dlya funktsionalno-differentsialnykh uravnenii neitralnogo tipa”, Prikl. mat. vopr. upravl., 2018, no. 1, 13–25

[5] Balandin A. S., “Ob ustoichivosti nekotorykh avtonomnykh differentsialnykh uravnenii neitralnogo tipa”, Sb. tr. XII Mezhdunar. konf. «Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii» (PMTUKT-2019), Voronezh, 2019, 59–63

[6] Vagina M. Yu., Lokalnaya ustoichivost nekotorykh vidov logisticheskogo uravneniya dinamiki populyatsii s zapazdyvaniyami, Chelyabinsk, 2004

[7] Vagina M. Yu., Kipnis M. M., “Ustoichivost nulevogo resheniya differentsialnogo uravneniya s zapazdyvaniyami”, Mat. zametki., 74:5 (2003), 786–789 | DOI | MR

[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR

[9] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya. T. II, Fizmatlit, M., 2001

[10] Elaydi S., An Introduction to Difference Equations, Springer, New York, 2005 | MR | Zbl

[11] Malygina V., Chudinov K., “On the asymptotic behavior of solutions to linear autonomous neutral functional differential equations”, Funct. Differ. Equations., 27:3–4 (2020), 103–123 | MR | Zbl