Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_227_a6, author = {M. P. Eshov and N. N. Kodirov and T. K. Yuldashev}, title = {Optimization problems in ordinary first-order autonomous systems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {92--99}, publisher = {mathdoc}, volume = {227}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a6/} }
TY - JOUR AU - M. P. Eshov AU - N. N. Kodirov AU - T. K. Yuldashev TI - Optimization problems in ordinary first-order autonomous systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 92 EP - 99 VL - 227 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_227_a6/ LA - ru ID - INTO_2023_227_a6 ER -
%0 Journal Article %A M. P. Eshov %A N. N. Kodirov %A T. K. Yuldashev %T Optimization problems in ordinary first-order autonomous systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 92-99 %V 227 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_227_a6/ %G ru %F INTO_2023_227_a6
M. P. Eshov; N. N. Kodirov; T. K. Yuldashev. Optimization problems in ordinary first-order autonomous systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 92-99. http://geodesic.mathdoc.fr/item/INTO_2023_227_a6/
[1] Iskenderov A. D., Gamidov R. A., “Zadachi optimizatsii s gradientom upravleniya v koeffitsientakh ellipticheskikh uravnenii”, Avtomat. telemekh., 81:9 (2020), 1627–1636 | MR | Zbl
[2] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR
[3] Egorov A. I., Optimalnoe upravlenie termicheskimi i diffuzionnymi protsessami, Nauka, M., 1978
[4] Lure K. A., Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975 | MR
[5] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973
[6] Kvitko A. N., “Ob odnom metode resheniya lokalnoi kraevoi zadachi dlya nelineinoi upravlyaemoi sistemy”, Avtomat. telemekh., 81:2 (2020), 236–246 | MR | Zbl
[7] Miller B. M., Rubinovich E. Ya., “Razryvnye resheniya v zadachakh optimalnogo upravleniya i ikh predstavlenie s pomoschyu singulyarnykh prostranstvenno-vremennykh preobrazovanii”, Avtomat. telemekh., 74:12 (2013), 56–103 | Zbl
[8] Paraev Yu. I., Poluektova K. O., “Optimalnoe upravlenie odnosektornoi ekonomikoi pri sluchainom izmenenii osnovnogo kapitala i trudovykh resursov”, Avtomat. telemekh., 2020, no. 4, 162–172 | MR | Zbl
[9] Rapoport E. Ya., Optimalnoe upravlenie sistemami s raspredelennym parametrom, Vysshaya shkola, M., 2009
[10] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000
[11] Yuldashev T. K., “Optimalnoe upravlenie obratnymi teplovymi protsessami v parabolicheskom uravnenii s nelineinymi otkloneniyami po vremeni”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 210 (2022), 117–135 | DOI
[12] Girsanov I. V., Lectures on the Mathematical Theory of Extremum Problems, Springer-Verlag, New York, 1972 | MR | Zbl
[13] Lions J. L., Optimal control of systems governed by partial differential equations, Springer-Verlag, New York, 1971 | MR | Zbl
[14] Kerimbekov A. K., “On solvability of the nonlinear optimal control problem for processes described by the semilinear parabolic equations”, Proc. World Congr. Eng., 1 (2011), 270–275
[15] Yuldashev T. K., “Nonlinear optimal control of thermal processes in a nonlinear inverse problem”, Lobachevskii J. Math., 41:1 (2020), 124–136 | DOI | MR | Zbl
[16] Yuldashev T. K., “Periodic solutions for an impulsive system of nonlinear differential equations with maxima”, Nanosistemy: Fiz. Khim. Mat., 13:2 (2022), 135–141 | MR
[17] Yuldashev T. K., “Periodic solutions for an impulsive system of integro-differential equations with maxima”, Vestn. SamGTU. Ser. Fiz.-mat. nauki., 26:2 (2022), 368–379 | DOI | MR | Zbl
[18] Yuldashev T. K., Ashirbaev B. Y., “Optimal feedback control problem for a singularly perturbed discrete system”, Lobachevskii J. Math., 44:2 (2023), 661–668 | DOI | MR | Zbl
[19] Yuldashev T. K., Fayziev A. K., “On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima”, Nanosistemy: Fiz. Khim. Mat., 13:1 (2022), 36–44 | MR
[20] Yuldashev T. K., Fayziev A. K., “Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector”, Lobachevskii J. Math., 43:8 (2022), 2332–2340 | DOI | MR | Zbl