Optimization problems in ordinary first-order autonomous systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 92-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine mathematical control problems for first-order autonomous systems. Using Pontryagin's maximum principle, we analyze the mathematical problem of optimizing the generation of income in the market for educational services, taking into account the deferment of investment.
Keywords: control problem, autonomous system, maximum principle, minimization of a functional, first-order differential equation, uniqueness of a solution
Mots-clés : existence of a solution
@article{INTO_2023_227_a6,
     author = {M. P. Eshov and N. N. Kodirov and T. K. Yuldashev},
     title = {Optimization problems in ordinary first-order autonomous systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {92--99},
     publisher = {mathdoc},
     volume = {227},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a6/}
}
TY  - JOUR
AU  - M. P. Eshov
AU  - N. N. Kodirov
AU  - T. K. Yuldashev
TI  - Optimization problems in ordinary first-order autonomous systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 92
EP  - 99
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_227_a6/
LA  - ru
ID  - INTO_2023_227_a6
ER  - 
%0 Journal Article
%A M. P. Eshov
%A N. N. Kodirov
%A T. K. Yuldashev
%T Optimization problems in ordinary first-order autonomous systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 92-99
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_227_a6/
%G ru
%F INTO_2023_227_a6
M. P. Eshov; N. N. Kodirov; T. K. Yuldashev. Optimization problems in ordinary first-order autonomous systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 92-99. http://geodesic.mathdoc.fr/item/INTO_2023_227_a6/

[1] Iskenderov A. D., Gamidov R. A., “Zadachi optimizatsii s gradientom upravleniya v koeffitsientakh ellipticheskikh uravnenii”, Avtomat. telemekh., 81:9 (2020), 1627–1636 | MR | Zbl

[2] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR

[3] Egorov A. I., Optimalnoe upravlenie termicheskimi i diffuzionnymi protsessami, Nauka, M., 1978

[4] Lure K. A., Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975 | MR

[5] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973

[6] Kvitko A. N., “Ob odnom metode resheniya lokalnoi kraevoi zadachi dlya nelineinoi upravlyaemoi sistemy”, Avtomat. telemekh., 81:2 (2020), 236–246 | MR | Zbl

[7] Miller B. M., Rubinovich E. Ya., “Razryvnye resheniya v zadachakh optimalnogo upravleniya i ikh predstavlenie s pomoschyu singulyarnykh prostranstvenno-vremennykh preobrazovanii”, Avtomat. telemekh., 74:12 (2013), 56–103 | Zbl

[8] Paraev Yu. I., Poluektova K. O., “Optimalnoe upravlenie odnosektornoi ekonomikoi pri sluchainom izmenenii osnovnogo kapitala i trudovykh resursov”, Avtomat. telemekh., 2020, no. 4, 162–172 | MR | Zbl

[9] Rapoport E. Ya., Optimalnoe upravlenie sistemami s raspredelennym parametrom, Vysshaya shkola, M., 2009

[10] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[11] Yuldashev T. K., “Optimalnoe upravlenie obratnymi teplovymi protsessami v parabolicheskom uravnenii s nelineinymi otkloneniyami po vremeni”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 210 (2022), 117–135 | DOI

[12] Girsanov I. V., Lectures on the Mathematical Theory of Extremum Problems, Springer-Verlag, New York, 1972 | MR | Zbl

[13] Lions J. L., Optimal control of systems governed by partial differential equations, Springer-Verlag, New York, 1971 | MR | Zbl

[14] Kerimbekov A. K., “On solvability of the nonlinear optimal control problem for processes described by the semilinear parabolic equations”, Proc. World Congr. Eng., 1 (2011), 270–275

[15] Yuldashev T. K., “Nonlinear optimal control of thermal processes in a nonlinear inverse problem”, Lobachevskii J. Math., 41:1 (2020), 124–136 | DOI | MR | Zbl

[16] Yuldashev T. K., “Periodic solutions for an impulsive system of nonlinear differential equations with maxima”, Nanosistemy: Fiz. Khim. Mat., 13:2 (2022), 135–141 | MR

[17] Yuldashev T. K., “Periodic solutions for an impulsive system of integro-differential equations with maxima”, Vestn. SamGTU. Ser. Fiz.-mat. nauki., 26:2 (2022), 368–379 | DOI | MR | Zbl

[18] Yuldashev T. K., Ashirbaev B. Y., “Optimal feedback control problem for a singularly perturbed discrete system”, Lobachevskii J. Math., 44:2 (2023), 661–668 | DOI | MR | Zbl

[19] Yuldashev T. K., Fayziev A. K., “On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima”, Nanosistemy: Fiz. Khim. Mat., 13:1 (2022), 36–44 | MR

[20] Yuldashev T. K., Fayziev A. K., “Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector”, Lobachevskii J. Math., 43:8 (2022), 2332–2340 | DOI | MR | Zbl