Completeness of exponential systems in functional spaces in terms of perimeter
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 79-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new scale of completeness conditions for exponential systems is established for two types of functional spaces on subsets of the complex plane. The first type of spaces are Banach spaces of functions that are continuous on a compact set and holomorphic in the interior of this compact set (if it is nonempty) with the uniform norm. The second type consists of spaces of holomorphic functions on a bounded open set with the topology of uniform convergence on compact sets. These conditions are formulated in terms of majorizing the perimeter of the convex hull of the domain of functions from the space by new characteristics of the distribution of exponents of the exponential system.
Keywords: completeness of systems of functions, exponential system, entire function of exponential type, distribution of roots, perimeter, convex hull, support function
@article{INTO_2023_227_a5,
     author = {B. N. Khabibullin and E. G. Kudasheva and R. R. Muryasov},
     title = {Completeness of exponential systems in functional spaces in terms of perimeter},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {227},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a5/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - E. G. Kudasheva
AU  - R. R. Muryasov
TI  - Completeness of exponential systems in functional spaces in terms of perimeter
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 79
EP  - 91
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_227_a5/
LA  - ru
ID  - INTO_2023_227_a5
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A E. G. Kudasheva
%A R. R. Muryasov
%T Completeness of exponential systems in functional spaces in terms of perimeter
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 79-91
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_227_a5/
%G ru
%F INTO_2023_227_a5
B. N. Khabibullin; E. G. Kudasheva; R. R. Muryasov. Completeness of exponential systems in functional spaces in terms of perimeter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 79-91. http://geodesic.mathdoc.fr/item/INTO_2023_227_a5/

[1] Bonnezen T., Fenkhel V., Teoriya vypuklykh tel, Fazis, M., 2002

[2] Braichev G. G., Vvedenie v teoriyu rosta vypuklykh i tselykh funktsii, Prometei, M., 2005

[3] Burbaki N., Funktsii deistvitelnogo peremennogo. Elementarnaya teoriya, Nauka, M., 1965 | MR

[4] Karimov M. R., Khabibullin B. N., “Sovpadenie nekotorykh plotnostei raspredeleniya mnozhestv i polnota sistem tselykh funktsii”, Tr. Mezhdunar. konf. «Kompleksnyi analiz, differentsialnye uravneniya i smezhnye voprosy». III. Analiz i differentsialnye uravneniya, In-t mat. s VTs UNTs RAN, Ufa, 2000, 29–34

[5] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Fizmatgiz, M., 1956

[6] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[7] Salimova A. E., Khabibullin B. N., “Rost subgarmonicheskikh funktsii vdol pryamoi i raspredelenie ikh mer Rissa”, Ufim. mat. zh., 12:2 (2020), 35–48 | MR | Zbl

[8] Khabibullin B. N., “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. mat., 55:5 (1991), 1101–1123

[9] Khabibullin B. N., “Teorema edinstvennosti dlya subgarmonicheskikh funktsii konechnogo poryadka”, Mat. sb., 182:6 (1991), 811–827 | Zbl

[10] Khabibullin B. N., “Polnota sistem tselykh funktsii v prostranstvakh golomorfnykh funktsii”, Mat. zametki., 66:4 (1999), 603–616 | DOI | Zbl

[11] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2012

[12] Khabibullin B. N., Shmeleva A. V., “Vymetanie mer i subgarmonicheskikh funktsii na sistemu luchei. I. Klassicheskii sluchai”, Algebra i analiz., 31:1 (2019), 156–210

[13] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[14] Hörmander L., Notions of Convexity, Birkhäuser, Boston, MA, 1994 | MR | Zbl

[15] Ransford T., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl