Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 51-60

Voir la notice de l'article provenant de la source Math-Net.Ru

A new nonlinear mathematical model is proposed that describes the equilibrium of a two-dimensional elastic body with two thin rigid inclusions. The problem is formulated as a minimizing problem for the energy functional over a nonconvex set of possible displacements defined in a suitable Sobolev space. The existence of a variational solution to the problem is proved. Optimality conditions and differential relations are obtained that characterize the properties of the solution in the domain and on the inclusion; these conditions are satisfied for sufficiently smooth solutions.
Keywords: crack, rigid inclusion, nonpenetration condition, variational problem
@article{INTO_2023_227_a3,
     author = {N. P. Lazarev and V. A. Kovtunenko},
     title = {Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {227},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a3/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - V. A. Kovtunenko
TI  - Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 51
EP  - 60
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_227_a3/
LA  - ru
ID  - INTO_2023_227_a3
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A V. A. Kovtunenko
%T Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 51-60
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_227_a3/
%G ru
%F INTO_2023_227_a3
N. P. Lazarev; V. A. Kovtunenko. Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 51-60. http://geodesic.mathdoc.fr/item/INTO_2023_227_a3/