Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 51-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new nonlinear mathematical model is proposed that describes the equilibrium of a two-dimensional elastic body with two thin rigid inclusions. The problem is formulated as a minimizing problem for the energy functional over a nonconvex set of possible displacements defined in a suitable Sobolev space. The existence of a variational solution to the problem is proved. Optimality conditions and differential relations are obtained that characterize the properties of the solution in the domain and on the inclusion; these conditions are satisfied for sufficiently smooth solutions.
Keywords: crack, rigid inclusion, nonpenetration condition, variational problem
@article{INTO_2023_227_a3,
     author = {N. P. Lazarev and V. A. Kovtunenko},
     title = {Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {227},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a3/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - V. A. Kovtunenko
TI  - Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 51
EP  - 60
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_227_a3/
LA  - ru
ID  - INTO_2023_227_a3
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A V. A. Kovtunenko
%T Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 51-60
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_227_a3/
%G ru
%F INTO_2023_227_a3
N. P. Lazarev; V. A. Kovtunenko. Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 51-60. http://geodesic.mathdoc.fr/item/INTO_2023_227_a3/

[1] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Fizmatlit, M., 1988 | MR

[2] Morozov N. F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984

[3] Neustroeva N. V., Lazarev N. P., “Optimalnoe upravlenie uglom naklona treschiny v zadache o ravnovesii plastiny Timoshenko s uprugim vklyucheniem”, Mat. zametki SVFU., 28:4 (2021), 58–70

[4] Nikolaeva N. A., “O ravnovesii uprugikh tel s treschinami, peresekayuschimi tonkie vklyucheniya”, Sib. zh. industr. mat., 22:4 (2019), 68–80

[5] Khludnev A. M., Popova T. S., “Ob ierarkhii tonkikh vklyuchenii v uprugikh telakh”, Mat. zametki SVFU., 23:1 (2016), 87–107 | Zbl

[6] Furtsev A. I., “On contact between a thin obstacle and a plate containing a thin inclusion”, J. Math. Sci., 237:4 (2019), 530–545 | DOI | MR

[7] Hintermüller M., Kovtunenko V. A., Kunisch K. A., “Papkovich–Neuber-based numerical approach to cracks with contact in 3D”, IMA J. Appl. Math., 74:3 (2009), 325–343 | DOI | MR | Zbl

[8] Hu K. X., Chandra A., “Interactions among general systems of cracks and anticracks: An integral equation approach”, J. Appl. Mech., 60:4 (1993), 920–928 | DOI | Zbl

[9] Itou H., Khludnev A. M., Rudoy E. M., Tani A., “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl

[10] Itou H., Kovtunenko V. A., Lazarev N. P., “Asymptotic series solution for plane poroelastic model with non-penetrating crack driven by hydraulic fracture”, Appl. Eng. Sci., 10 (2022), 100089 | MR

[11] Itou H., Kovtunenko V. A., Rudoy E. M., “Three-field mixed formulation of elasticity model nonlinear in the mean normal stress for the problem of non-penetrating cracks in bodies”, Appl. Eng. Sci., 7 (2021), 100060

[12] Jobin T. M., Ramji M., Khaderi S. N., “Numerical evaluation of the interaction of rigid line inclusions using strain intensity factors”, Int. J. Mech. Sci., 153–154 (2019), 10–20 | DOI

[13] Khludnev A. M., “Optimal control of crack growth in elastic body with inclusions”, Eur. J. Mech. A. Solids., 29:3 (2010), 392–399 | DOI | MR | Zbl

[14] Khludnev A. M., “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl

[15] Khludnev A. M., “Junction problem for thin elastic and volume rigid inclusions in elastic body”, Phil. Trans. Roy. Soc. A., 380:2236 (2022), 20210360 | DOI | MR

[16] Khludnev A., Esposito A. C., Faella L., “Optimal control of parameters for elastic body with thin inclusions”, J. Optim. Theory Appl., 184:1 (2020), 293–314 | DOI | MR | Zbl

[17] Khludnev A. M., Itou H., “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl

[18] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000

[19] Khludnev A., Leugering G., “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 3 (2010), 1955–1967 | MR

[20] Khludnev A. M., Leugering G., “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. complex Syst., 2:1 (2014), 1–21 | DOI | MR | Zbl

[21] Khludnev A. M., Popova T. S., “On junction problem with damage parameter for Timoshenko and rigid inclusions inside elastic body”, Z. Angew. Math. Mech., 100:8 (2020), 202000063 | DOI | MR

[22] Khludnev A. M., Shcherbakov V. V., “A note on crack propagation paths inside elastic bodies”, Appl. Math. Lett., 79:1 (2018), 80–84 | DOI | MR | Zbl

[23] Kovtunenko V. A., Kunisch K., “Shape derivative for penalty-constrained nonsmooth-nonconvex optimization: cohesive crack problem”, J. Optim. Theory Appl., 194 (2022), 597–635 | DOI | MR | Zbl

[24] Kovtunenko V. A., Leugering G., “A shape-topological control problem for nonlinear crack-defect interaction: The antiplane variational model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl

[25] Lazarev N., “Inverse problem for cracked inhomogeneous Kirchhoff–Love plate with two hinged rigid inclusions”, Bound. Value Probl., 2021:1 (2021), 88 | DOI | MR | Zbl

[26] Lazarev N., Neustroeva N., “Optimal control of rigidity parameter of elastic inclusions in composite plate with a crack”, Mathematics and Computing, v. 253, eds. Ghosh D., Giri D., Mohapatra R., Sakurai K., Savas E., Som T., Springer, Singapore, 2018, 67–77 | MR

[27] Lazarev N., Rudoy E., “Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies”, J. Comput. Appl. Math., 403 (2022), 113710 | DOI | MR | Zbl

[28] Lazarev N. P., Semenova G. M., Romanova N. A., “On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff–Love plate with a crack”, J. Sib. Fed. Univ. Math. Phys., 14:1 (2021), 28–41 | DOI | MR

[29] Popova T. S., “Numerical solution of the equilibrium problem for a two-dimensional elastic body with a thin semirigid inclusion”, Math. Notes NEFU., 28:1 (2021), 51–66

[30] Rudoy E. M., Shcherbakov V. V., “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sib. Electron. Math. Rep., 13:1 (2016), 395–410 | MR | Zbl

[31] Rudoy E. M., Shcherbakov V. V., “First-order shape derivative of the energy for elastic plates with rigid inclusions and interfacial cracks”, Appl. Math. Optim., 84 (2021), 2775–2802 | DOI | MR | Zbl

[32] Shcherbakov V. V., “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl