Exact solution of 3d Navier--Stokes equations for potential motions of an incompressible fluid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A procedure for constructing an exact solution of the 3D Navier–Stokes equations for the case of potential motion of an incompressible fluid in a deep, large-volume reservoir is proposed. The solution is considered under asymptotic boundary conditions that correspond to a given value of the velocity vector at great depth. The procedure for constructing a solution is based on the integral of the 3D Navier–Stokes equations. By introducing functions of a complex variable, the problem is reduced to a system of Riccati equations, which can be solved analytically. The qualitative features of the solution are examined.
Keywords: Navier–Stokes equations, potential motion, integral, function of a complex variable
Mots-clés : viscous fluid, Riccati equation
@article{INTO_2023_227_a2,
     author = {A. V. Koptev},
     title = {Exact solution of 3d {Navier--Stokes} equations for potential motions of an incompressible fluid},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {227},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a2/}
}
TY  - JOUR
AU  - A. V. Koptev
TI  - Exact solution of 3d Navier--Stokes equations for potential motions of an incompressible fluid
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 41
EP  - 50
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_227_a2/
LA  - ru
ID  - INTO_2023_227_a2
ER  - 
%0 Journal Article
%A A. V. Koptev
%T Exact solution of 3d Navier--Stokes equations for potential motions of an incompressible fluid
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 41-50
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_227_a2/
%G ru
%F INTO_2023_227_a2
A. V. Koptev. Exact solution of 3d Navier--Stokes equations for potential motions of an incompressible fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 41-50. http://geodesic.mathdoc.fr/item/INTO_2023_227_a2/

[2] Koptev A. V., “Integraly uravnenii Nave—Stoksa”, Tr. Srednevolzh. mat. o-va., 6:1 (2004), 215–225 | Zbl

[3] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[4] Polyanin A. D., Zaitsev V. F., Obyknovennye differentsialnye uravneniya, Fizmatlit, M., 2001

[5] Fefferman C. L., Existence and Smoothness of the Navier–Stokes Equation, Princeton Univ., 2000

[6] Koptev A. V., “Integrals of motion of an incompressible medium flow. From classic to modern”, Handbook on Navier–Stokes Equations. Theory and Applied Analysis, Nova Science Publishers, New York, 2017, 443–460

[7] Koptev A. V., “Method for solving the Navier–Stokes and Euler equations of motion for incompressible media”, J. Math. Sci., 250:1 (2020), 254–382 | DOI | MR

[8] Koptev A. V., “Systematization and analysis of integrals of motion for an incompressible fluid flow”, Zh. SFU. Ser. Mat. fiz., 11:3 (2018), 370–382 | MR

[9] Koptev A. V., “Constructive method to solving 3D Navier–Stokes equations”, 8 Eur. Congr. Math. Book of Abstracts, Univ. of Primorska Press, Portorozh, 2021, 638–639

[10] Koptev A. V., “Exact solutions of 3D Navier–Stokes equations”, Zh. SFU. Ser. Mat. fiz., 13:3 (2020), 306–313 | MR

[11] Koptev A. V., “Deep water movement”, Navier–Stokes Equations and Their Applications, Nova Science Publishers, New York, 2021, 83–103