Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_227_a0, author = {G. A. Akishev}, title = {On orders of $n$-term approximations of functions of many variables in the {Lorentz} space}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--19}, publisher = {mathdoc}, volume = {227}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a0/} }
TY - JOUR AU - G. A. Akishev TI - On orders of $n$-term approximations of functions of many variables in the Lorentz space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 3 EP - 19 VL - 227 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_227_a0/ LA - ru ID - INTO_2023_227_a0 ER -
%0 Journal Article %A G. A. Akishev %T On orders of $n$-term approximations of functions of many variables in the Lorentz space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 3-19 %V 227 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_227_a0/ %G ru %F INTO_2023_227_a0
G. A. Akishev. On orders of $n$-term approximations of functions of many variables in the Lorentz space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 3-19. http://geodesic.mathdoc.fr/item/INTO_2023_227_a0/
[1] Akishev G., “Priblizhenie funktsionalnykh klassov v prostranstvakh smeshannoi normoi”, Mat. sb., 197:8 (2006), 17–40 | DOI | Zbl
[2] Akishev G., “O poryadkakh priblizheniya funktsii mnogikh peremennykh v prostranstve Lorentsa”, Tr. IMM UrO RAN., 22:4 (2016), 1–17
[3] Akishev G., “O tochnosti otsenok nailuchshego $M$-chlennogo priblizheniya klassa Besova”, Sib. elektron. mat. izv., 7 (2010), 255–274 | Zbl
[4] Akishev G., “Ob otsenkakh poryadka nailuchshikh $M$–chlennykh priblizhenii funktsii mnogikh peremennykh v anizotropnom prostranstve Lorentsa—Karamaty”, Ufim. mat. zh., 15:1 (2023) | MR
[5] Akishev G., “Ob otsenkakh nailuchshikh $n$-chlennykh priblizhenii klassov funktsii v anizotropnom prostranstve Lorentsa”, Mat. Mezhdunar. konf. «Sovremennye metody teorii funktsii i smezhnye problemy» (Voronezhskaya zimnyaya matematicheskaya shkola) (Voronezh, 27 yanvarya — 1 fevralya 2023 g.), Izdatelskii dom VGU, Voronezh, 2023, 24–25
[6] Amanov T. I., “Teoremy predstavleniya i vlozheniya dlya funktsionalnykh prostranstv $S_{p, \theta}^{\bar r}B(R_{n})$ i $S_{p, \theta}^{\bar r}B$ ($0 \le x_{j} \le 2\pi$, $j =1,\dots,n$)”, Tr. mat. in-ta AN SSSR., 77 (1965), 5–34 | Zbl
[7] Babenko K. I., “O priblizhenii odnogo klassa periodicheskikh funktsii mnogikh peremennykh trigonometricheskie mnogochlenami”, Dokl. AN SSSR., 1960, no. 5, 982–985 | Zbl
[8] Bazarkhanov B., “Priblizhenie klassov funktsii s dominiruyuschei smeshannoi proizvodnoi trigonometricheskimi polinomami”, Sovremennye problemy teorii funktsii. Mat. Vsesoyuz. shkoly po teorii funktsii, AzGU, Baku, 1977, 70–75
[9] Bazarkhanov D. B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. mat. in-ta im. V. A Steklova RAN., 269 (2010), 8–30 | Zbl
[10] Bazarkhanov D. B., “Nelineinye trigonometricheskie priblizheniya klassov funktsii mnogikh peremennykh”, Tr. mat. in-ta im. V. A Steklova RAN., 293 (2016), 8–42 | DOI | Zbl
[11] Bekmaganbetov K. A., “O poryadkakh priblizheniya klassa Besova v metrike metrike anizotropnykh prostranstv Lorentsa”, Ufim. mat. zh., 1:2 (2009), 9–16 | Zbl
[12] Belinskii E. S., “Priblizhenie «plavayuschei» sistemoi eksponent na klassakh periodicheskikh funktsii s ogranichennoi smeshannoi proizvodnoi”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslavl, 1988, 16–33
[13] Belinskii E. S., “Priblizhenie «plavayuschei» sistemoi eksponent na klassakh gladkikh periodicheskikh funktsii”, Mat. sb., 132:1 (1987), 20–27
[14] Bugrov Ya. S., “Priblizhenie klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Mat. sb., 64:3 (1964), 410–418 | Zbl
[15] Galeev E. M., “Priblizhenie summami Fure klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Mat. sb., 23:2 (1978), 197–212 | MR | Zbl
[16] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Usp. mat. nauk., 29:3 (1974), 161–178 | MR | Zbl
[17] Lizorkin P. I., Nikolskii S. M., “Prostranstva funktsii smeshannoi s dekompozitsionnoi tochki zreniya”, Tr. mat. in-ta AN SSSR., 187 (1989), 143–161
[18] Maiorov V. E., “Trigonometricheskie poperechniki sobolevskikh klassov $W^{r}_{p}$ v prostranstve $L_q$”, Mat. zametki., 40:2 (1986), 161–173 | MR | Zbl
[19] Mityagin B. S., “Priblizhenie funktsii v prostranstvakh $L^{p}$ i $C$ na tore”, Mat. sb., 58:4 (1962), 397–414 | Zbl
[20] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[21] Nikolskii S. M., “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. mat. zh., 4:6 (1963), 1342–1364 | Zbl
[22] Nikolskaya N. S., “Priblizhenie differentsiruemykh funktsii mnogikh peremennykh summami Fure v metrike $L_{p}$”, Sib. mat. zh., 15:2 (1974), 395–412 | Zbl
[23] Nursultanov E. D., “Neravenstva raznykh metrik S. M. Nikolskogo i svoistva posledovatelnosti norm summ Fure funktsii iz prostranstva Lorentsa”, Tr. mat. in-ta AN SSSR., 255 (2006), 1–18
[24] Romanyuk A. S., “Priblizhenie klassov Besova periodicheskikh funktsii mnogikh peremennykh v prostranstve $L_{q}$”, Ukr. mat. zh., 43:10 (1991), 1398–1408 | MR | Zbl
[25] Romanyuk A. S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 67:2 (2003), 61–100 | DOI | MR | Zbl
[26] Romanyuk A. S., “Nailuchshie trigonometricheskie i bilineinye priblizheniya klassov funktsii mnogikh peremennykh”, Mat. zametki., 94:3 (2013), 401–415 | DOI | Zbl
[27] Stechkin S. B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR., 102:1 (1955), 37–40 | Zbl
[28] Telyakovskii S. A., “Nekotorye otsenki dlya trigonometricheskikh ryadov s kvazivypuklymi koeffitsientami”, Mat. sb., 63:3 (1964), 426–444
[29] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. mat. in-ta AN SSSR., 178 (1986), 3–112
[30] Temlyakov V. N., “Konstruktivnye razrezhennye trigonometricheskie priblizheniya i drugie zadachi dlya funktsii smeshannoi gladkosti”, Mat. sb., 206:11 (2015), 131–1160 | DOI | MR
[31] Tikhomirov V. M., “Teoriya priblizhenii”, Sovr. probl. mat. Fundam. napr., 14 (1987), 103–270
[32] Akishev G., “Estimations of the best $M$-term approximations of functions in the Lorentz space with constructive methods”, Bull. Karaganda Univ. Math. Ser., 3 (2017), 13–26 | DOI | MR
[33] Akishev G., On exact estimates of the order of approximation of functions of several variables in the anisotropic Lorentz–Zygmund space, arXiv: 2106.07188 [math.CA] | MR
[34] Bazarkhanov D. B., Temlyakov V. N., “Nonlinear tensor product approximation of functions”, arXiv: 1409.1403 [stat.ML] | MR
[35] Blozinski A. P., “Multivariate rearragements and Banach function spaces with mixed norms”, Trans. Am. Math. Soc., 263 (1981), 146–167 | DOI | MR
[36] De Vore R. A., “Nonlinear approximation”, Acta Numerica., 7 (1998), 51–150 | DOI | MR | Zbl
[37] Dinh Dũng, Temlyakov V. N., Ullrich T., Hyperbolic Cross Approximation, Birkhäuser, Springer, Basel–Berlin, 2018 | MR | Zbl
[38] Hansen M., Sickel W., “Best $m$-term approximation and Sobolev–Besov spaces of dominating mixed smoothness the case of compact embeddings”, Constr. Approx., 36:1 (2012), 1–51 | DOI | MR | Zbl
[39] Makovoz Y., “On trigonometric $n$-widths and their generalization”, J. Approx. Theory., 41:4 (1984), 361–366 | DOI | MR | Zbl
[40] Schmeisser H.-J., Sickel W., “Spaces of functions of mixed smoothness and approximation from hyperbolic crosses”, J. Approx. Theory., 128 (2004), 115–150 | DOI | MR | Zbl
[41] Temlyakov V. N., “Multivariate Approximation”, Cambridge Univ. Press, 2018 | MR
[42] Temlyakov V. N., “Constructive sparse trigonometric approximation for functions with small mixed smoothness”, Constr. Approx., 45:3 (2017), 467–495 | DOI | MR | Zbl
[43] Van Kien Nguyen, Van Dung Nguyen, “Best $n$-term approximation of diagonal operators and application to function spaces with mixed smoothness”, Anal. Math., 48 (2022), 1127–1152 | DOI | MR