On orders of $n$-term approximations of functions of many variables in the Lorentz space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the anisotropic Lorentz space of $2\pi$-periodic functions of many variables and the Nikolsky–Besov class in this space. We obtain estimates for the best approximations along the hyperbolic cross and the best $M$-term approximations of functions of the Nikolsky—Besov class with respect to the norm of the anisotropic Lorentz space for various relations between the parameters of the class and the space.
Keywords: Lorentz space, trigonometric polynomial, best $M$-term approximation
@article{INTO_2023_227_a0,
     author = {G. A. Akishev},
     title = {On orders of $n$-term approximations of functions of many variables in the {Lorentz} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {227},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_227_a0/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - On orders of $n$-term approximations of functions of many variables in the Lorentz space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 3
EP  - 19
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_227_a0/
LA  - ru
ID  - INTO_2023_227_a0
ER  - 
%0 Journal Article
%A G. A. Akishev
%T On orders of $n$-term approximations of functions of many variables in the Lorentz space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 3-19
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_227_a0/
%G ru
%F INTO_2023_227_a0
G. A. Akishev. On orders of $n$-term approximations of functions of many variables in the Lorentz space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Tome 227 (2023), pp. 3-19. http://geodesic.mathdoc.fr/item/INTO_2023_227_a0/

[1] Akishev G., “Priblizhenie funktsionalnykh klassov v prostranstvakh smeshannoi normoi”, Mat. sb., 197:8 (2006), 17–40 | DOI | Zbl

[2] Akishev G., “O poryadkakh priblizheniya funktsii mnogikh peremennykh v prostranstve Lorentsa”, Tr. IMM UrO RAN., 22:4 (2016), 1–17

[3] Akishev G., “O tochnosti otsenok nailuchshego $M$-chlennogo priblizheniya klassa Besova”, Sib. elektron. mat. izv., 7 (2010), 255–274 | Zbl

[4] Akishev G., “Ob otsenkakh poryadka nailuchshikh $M$–chlennykh priblizhenii funktsii mnogikh peremennykh v anizotropnom prostranstve Lorentsa—Karamaty”, Ufim. mat. zh., 15:1 (2023) | MR

[5] Akishev G., “Ob otsenkakh nailuchshikh $n$-chlennykh priblizhenii klassov funktsii v anizotropnom prostranstve Lorentsa”, Mat. Mezhdunar. konf. «Sovremennye metody teorii funktsii i smezhnye problemy» (Voronezhskaya zimnyaya matematicheskaya shkola) (Voronezh, 27 yanvarya — 1 fevralya 2023 g.), Izdatelskii dom VGU, Voronezh, 2023, 24–25

[6] Amanov T. I., “Teoremy predstavleniya i vlozheniya dlya funktsionalnykh prostranstv $S_{p, \theta}^{\bar r}B(R_{n})$ i $S_{p, \theta}^{\bar r}B$ ($0 \le x_{j} \le 2\pi$, $j =1,\dots,n$)”, Tr. mat. in-ta AN SSSR., 77 (1965), 5–34 | Zbl

[7] Babenko K. I., “O priblizhenii odnogo klassa periodicheskikh funktsii mnogikh peremennykh trigonometricheskie mnogochlenami”, Dokl. AN SSSR., 1960, no. 5, 982–985 | Zbl

[8] Bazarkhanov B., “Priblizhenie klassov funktsii s dominiruyuschei smeshannoi proizvodnoi trigonometricheskimi polinomami”, Sovremennye problemy teorii funktsii. Mat. Vsesoyuz. shkoly po teorii funktsii, AzGU, Baku, 1977, 70–75

[9] Bazarkhanov D. B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. mat. in-ta im. V. A Steklova RAN., 269 (2010), 8–30 | Zbl

[10] Bazarkhanov D. B., “Nelineinye trigonometricheskie priblizheniya klassov funktsii mnogikh peremennykh”, Tr. mat. in-ta im. V. A Steklova RAN., 293 (2016), 8–42 | DOI | Zbl

[11] Bekmaganbetov K. A., “O poryadkakh priblizheniya klassa Besova v metrike metrike anizotropnykh prostranstv Lorentsa”, Ufim. mat. zh., 1:2 (2009), 9–16 | Zbl

[12] Belinskii E. S., “Priblizhenie «plavayuschei» sistemoi eksponent na klassakh periodicheskikh funktsii s ogranichennoi smeshannoi proizvodnoi”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslavl, 1988, 16–33

[13] Belinskii E. S., “Priblizhenie «plavayuschei» sistemoi eksponent na klassakh gladkikh periodicheskikh funktsii”, Mat. sb., 132:1 (1987), 20–27

[14] Bugrov Ya. S., “Priblizhenie klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Mat. sb., 64:3 (1964), 410–418 | Zbl

[15] Galeev E. M., “Priblizhenie summami Fure klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Mat. sb., 23:2 (1978), 197–212 | MR | Zbl

[16] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Usp. mat. nauk., 29:3 (1974), 161–178 | MR | Zbl

[17] Lizorkin P. I., Nikolskii S. M., “Prostranstva funktsii smeshannoi s dekompozitsionnoi tochki zreniya”, Tr. mat. in-ta AN SSSR., 187 (1989), 143–161

[18] Maiorov V. E., “Trigonometricheskie poperechniki sobolevskikh klassov $W^{r}_{p}$ v prostranstve $L_q$”, Mat. zametki., 40:2 (1986), 161–173 | MR | Zbl

[19] Mityagin B. S., “Priblizhenie funktsii v prostranstvakh $L^{p}$ i $C$ na tore”, Mat. sb., 58:4 (1962), 397–414 | Zbl

[20] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[21] Nikolskii S. M., “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. mat. zh., 4:6 (1963), 1342–1364 | Zbl

[22] Nikolskaya N. S., “Priblizhenie differentsiruemykh funktsii mnogikh peremennykh summami Fure v metrike $L_{p}$”, Sib. mat. zh., 15:2 (1974), 395–412 | Zbl

[23] Nursultanov E. D., “Neravenstva raznykh metrik S. M. Nikolskogo i svoistva posledovatelnosti norm summ Fure funktsii iz prostranstva Lorentsa”, Tr. mat. in-ta AN SSSR., 255 (2006), 1–18

[24] Romanyuk A. S., “Priblizhenie klassov Besova periodicheskikh funktsii mnogikh peremennykh v prostranstve $L_{q}$”, Ukr. mat. zh., 43:10 (1991), 1398–1408 | MR | Zbl

[25] Romanyuk A. S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 67:2 (2003), 61–100 | DOI | MR | Zbl

[26] Romanyuk A. S., “Nailuchshie trigonometricheskie i bilineinye priblizheniya klassov funktsii mnogikh peremennykh”, Mat. zametki., 94:3 (2013), 401–415 | DOI | Zbl

[27] Stechkin S. B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR., 102:1 (1955), 37–40 | Zbl

[28] Telyakovskii S. A., “Nekotorye otsenki dlya trigonometricheskikh ryadov s kvazivypuklymi koeffitsientami”, Mat. sb., 63:3 (1964), 426–444

[29] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. mat. in-ta AN SSSR., 178 (1986), 3–112

[30] Temlyakov V. N., “Konstruktivnye razrezhennye trigonometricheskie priblizheniya i drugie zadachi dlya funktsii smeshannoi gladkosti”, Mat. sb., 206:11 (2015), 131–1160 | DOI | MR

[31] Tikhomirov V. M., “Teoriya priblizhenii”, Sovr. probl. mat. Fundam. napr., 14 (1987), 103–270

[32] Akishev G., “Estimations of the best $M$-term approximations of functions in the Lorentz space with constructive methods”, Bull. Karaganda Univ. Math. Ser., 3 (2017), 13–26 | DOI | MR

[33] Akishev G., On exact estimates of the order of approximation of functions of several variables in the anisotropic Lorentz–Zygmund space, arXiv: 2106.07188 [math.CA] | MR

[34] Bazarkhanov D. B., Temlyakov V. N., “Nonlinear tensor product approximation of functions”, arXiv: 1409.1403 [stat.ML] | MR

[35] Blozinski A. P., “Multivariate rearragements and Banach function spaces with mixed norms”, Trans. Am. Math. Soc., 263 (1981), 146–167 | DOI | MR

[36] De Vore R. A., “Nonlinear approximation”, Acta Numerica., 7 (1998), 51–150 | DOI | MR | Zbl

[37] Dinh Dũng, Temlyakov V. N., Ullrich T., Hyperbolic Cross Approximation, Birkhäuser, Springer, Basel–Berlin, 2018 | MR | Zbl

[38] Hansen M., Sickel W., “Best $m$-term approximation and Sobolev–Besov spaces of dominating mixed smoothness the case of compact embeddings”, Constr. Approx., 36:1 (2012), 1–51 | DOI | MR | Zbl

[39] Makovoz Y., “On trigonometric $n$-widths and their generalization”, J. Approx. Theory., 41:4 (1984), 361–366 | DOI | MR | Zbl

[40] Schmeisser H.-J., Sickel W., “Spaces of functions of mixed smoothness and approximation from hyperbolic crosses”, J. Approx. Theory., 128 (2004), 115–150 | DOI | MR | Zbl

[41] Temlyakov V. N., “Multivariate Approximation”, Cambridge Univ. Press, 2018 | MR

[42] Temlyakov V. N., “Constructive sparse trigonometric approximation for functions with small mixed smoothness”, Constr. Approx., 45:3 (2017), 467–495 | DOI | MR | Zbl

[43] Van Kien Nguyen, Van Dung Nguyen, “Best $n$-term approximation of diagonal operators and application to function spaces with mixed smoothness”, Anal. Math., 48 (2022), 1127–1152 | DOI | MR