Solvability of start control problems for a class of degenerate nonlinear equations with fractional derivatives
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 80-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a class of start control problems for systems whose states are described by equations in Banach spaces that are not solvable with respect to the highest Gerasimov–Caputo fractional derivative and depend nonlinearly on lower-order fractional derivatives. A theorem on the existence of an optimal control is obtained. Abstract results are applies to the study of the start control problem for the modified Sobolev equation with a fractional derivative in time.
Keywords: optimal control, start control, fractional differential equation, Gerasimov–Caputo derivative, nonlinear evolution equation, degenerate evolution equation.
@article{INTO_2023_226_a8,
     author = {M. V. Plekhanova and G. D. Baybulatova},
     title = {Solvability of start control problems for a class of degenerate nonlinear equations with fractional derivatives},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {80--88},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a8/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - G. D. Baybulatova
TI  - Solvability of start control problems for a class of degenerate nonlinear equations with fractional derivatives
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 80
EP  - 88
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a8/
LA  - ru
ID  - INTO_2023_226_a8
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A G. D. Baybulatova
%T Solvability of start control problems for a class of degenerate nonlinear equations with fractional derivatives
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 80-88
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a8/
%G ru
%F INTO_2023_226_a8
M. V. Plekhanova; G. D. Baybulatova. Solvability of start control problems for a class of degenerate nonlinear equations with fractional derivatives. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 80-88. http://geodesic.mathdoc.fr/item/INTO_2023_226_a8/

[1] Baibulatova G. D., “Zadachi startovogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii s mladshimi drobnymi proizvodnymi”, Chelyab. fiz.-mat. zh., 5:3 (2020), 271–284 | DOI | MR | Zbl

[2] Gerasimov A. N., “Obobschenie lineinykh zakonov deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, Prikl. mat. mekh., 12 (1948), 529–539

[3] Glushak A. V., Avad Kh. K., “O razreshimosti abstraktnogo differentsialnogo uravneniya drobnogo poryadka s peremennym operatorom”, Sovr. mat. Fundam. napr., 47 (2013), 118–32

[4] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR

[5] Egorov I. E., Pyatkov S. G., Popov S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauka, Novosibirsk, 2000

[6] Kozhanov A. I., “Smeshannaya zadacha dlya odnogo klassa silno nelineinykh uravnenii sobolevskogo tipa vysokogo poryadka”, Dokl. RAN., 451:5 (2013), 492–494 | DOI | Zbl

[7] Plekhanova M. V., “Razreshimost zadach upravleniya dlya vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Chelyab. fiz.-mat. zh., 2:1 (2017), 53–65 | Zbl

[8] Plekhanova M. V., “Zadachi optimalnogo upravleniya dlya lineinykh vyrozhdennykh drobnykh uravnenii”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 149 (2018), 72–83 | MR

[9] Plekhanova M. V., Baibulatova G. D., Kien B. T., “Raspredelennoe upravlenie dlya polulineinykh uravnenii s proizvodnymi Gerasimova—Kaputo”, Mat. zametki SVFU., 28:2 (2021), 47–67

[10] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[11] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[12] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18 (1954), 3–50 | MR | Zbl

[13] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[14] Fedorov V. E., Gordievskikh D. M., “Razreshayuschie operatory vyrozhdennykh evolyutsionnykh uravnenii s drobnoi proizvodnoi po vremeni”, Izv. vuzov. Mat., 2015, no. 1, 71–83 | Zbl

[15] Fedorov V. E., Plekhanova M. V., “Optimalnoe upravlenie lineinymi uravneniyami sobolevskogo tipa”, Differ. uravn., 40:11 (2004), 1548–1556 | MR | Zbl

[16] Fedorov V. E., Plekhanova M. V., Nazhimov R. R., “Lineinye vyrozhdennye evolyutsionnye uravneniya s drobnoi proizvodnoi Rimana—Liuvillya”, Sib. mat. zh., 59:1 (2018), 171–184 | MR | Zbl

[17] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[18] Khessard B.,Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985

[19] Bahaa G. M., Hamiaz A., “Optimal control problem for coupled time-fractional diffusion systems with final observations”, J. Taibah Univ. Sci., 13:1 (2018), 124–135 | DOI | MR

[20] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces / Ph.D. thesis, University Press Facilities, Eindhoven University of Technology, Eindhoven, 2001 | MR

[21] Baleanu D., Machado J. A. T., Luo A. C. J., Fractional Dynamics and Control, Springer, London–New York–Dordrecht–Heidelberg, 2012 | MR | Zbl

[22] Debbouche A., Torres D. F. M., “Sobolev-type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions”, Fract. Calc. Appl. Anal., 18 (2015), 95–121 | DOI | MR | Zbl

[23] Fedorov V. E., “Applications of the theory of degenerate operator semigroups to initial-boundary-value problems”, J. Math. Sci., 2005, no. 126, 1658–1663 | DOI | MR | Zbl

[24] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differ. Equations., 51 (2015), 1360–1368 | DOI | MR | Zbl

[25] Fedorov V. E., Romanova E. A., Debbouche A., “Analytic in a sector resolving families of operators for degenerate evolution fractional equations”, J. Math. Sci., 228:4 (2018), 380–394 | DOI | MR

[26] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam–Boston–Heidelberg, 2006 | MR | Zbl

[27] Mainardi F., Luchko Y. F., Pagnini G., “The fundamental solution of the space-time fractional diffusion equation”, Fract. Calc. Appl. Anal., 4:2 (2001), 153–192 | MR | Zbl

[28] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, Boston, 1974 | MR | Zbl

[29] Plekhanova M. V., “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Math. Meth. Appl. Sci., 40 (2016), 41–44 | MR

[30] Plekhanova M. V., “Sobolev type equations of time-fractional order with periodical boundary conditions”, AIP Conf. Proc., 1759 (2016), 020101 | DOI

[31] Plekhanova M. V., Baybulatova G. D., “Problems of hard control for a class of degenerate fractional order evolution equations”, Proc. Int. Conf. “Mathematical Optimization Theory and Operations Research (MOTOR 2019)” (Yekaterinburg, Russia, July 08–12, 2019), Springer, 2019, 501–512 | MR | Zbl

[32] Plekhanova M. V., Baybulatova G. D., “Semilinear equations in Banach spaces with lower fractional derivatives”, Proc. Int. Conf. “Nonlinear Analysis and Boundary Value Problems (NABVP 2018)” (Santiago de Compostela, Spain, September 4–7, 2019), Springer, 2019, 81–93 | MR | Zbl

[33] Plekhanova M. V., Baybulatova G. D., “On strong solutions for a class of semilinear fractional degenerate evolution equations with lower fractional derivatives”, Math. Meth. Appl. Sci., 44:15 (2021), 11810–11819 | DOI | MR | Zbl

[34] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic, Dordrecht–Boston–London, 2002 | MR | Zbl

[35] Sviridyuk G. A., Fedorov V. E., Linear Sobolev-Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht Boston, 2003 | MR | Zbl

[36] Tarasov V. E., Fractional Dynamics, Higher Education Press, Beijing, 2010 | MR | Zbl

[37] Wang J. R., Zhou Y., “A class of fractional evolution equations and optimal controls”, Nonlin. Anal. Real World Appl., 12:1 (2011), 262–272 | DOI | MR | Zbl