On the application of generalized Bers powers for constructing solutions to the Dirac equation for the motion of a particle in a centrally symmetric field of a nucleus
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 54-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we demonstrate an application of the method of generalized powers for constructing solutions to the Dirac equation of quantum electrodynamics, which governs the motion of an electron in a centrally symmetric electrostatic field.
Keywords: generalized power, quantum electrodynamics.
Mots-clés : Dirac equation
@article{INTO_2023_226_a5,
     author = {Yu. A. Gladyshev and E. A. Loshkareva},
     title = {On the application of generalized {Bers} powers for constructing solutions to the {Dirac} equation for the motion of a particle in a centrally symmetric field of a nucleus},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {54--60},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a5/}
}
TY  - JOUR
AU  - Yu. A. Gladyshev
AU  - E. A. Loshkareva
TI  - On the application of generalized Bers powers for constructing solutions to the Dirac equation for the motion of a particle in a centrally symmetric field of a nucleus
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 54
EP  - 60
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a5/
LA  - ru
ID  - INTO_2023_226_a5
ER  - 
%0 Journal Article
%A Yu. A. Gladyshev
%A E. A. Loshkareva
%T On the application of generalized Bers powers for constructing solutions to the Dirac equation for the motion of a particle in a centrally symmetric field of a nucleus
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 54-60
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a5/
%G ru
%F INTO_2023_226_a5
Yu. A. Gladyshev; E. A. Loshkareva. On the application of generalized Bers powers for constructing solutions to the Dirac equation for the motion of a particle in a centrally symmetric field of a nucleus. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 54-60. http://geodesic.mathdoc.fr/item/INTO_2023_226_a5/

[1] Afanasenkova Yu. V., Gladyshev Yu. A., Loshkareva E. A., “Primenenie metoda obobschennykh stepenei dlya postroeniya reshenii sistemy differentsialnykh uravnenii Moisila—Teodoresku”, Tavrich. vestn. inform. mat., 2021, no. 1 (50), 48–64

[2] Akhiezer V. B., Kvantovaya elektrodinamika, IFML, M., 1959 | MR

[3] Bers L., Voprosy okolozvukovoi i sverkhzvukovoi gazodinamiki, Mir, M., 1976

[4] Gladyshev Yu. A., Formalizm Beltrami—Bersa i ego prilozheniya v matematicheskoi fizike, Kaluga, 1997

[5] Gladyshev Yu. A., Loshkareva E. A., “O metodakh postroeniya kompleksnykh obobschennykh stepenei Bersa”, Vestn. Kaluzh. un-ta., 2020, no. 2 (47), 77–80 | MR

[6] Gladyshev Yu. A., Loshkareva E. A., “Ob ispolzovanii metoda parametricheskikh obobschennykh stepenei dlya postroeniya reshenii odnogo klassa differentsialnykh uravnenii”, Mat. Mezhdunar. konf. «Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina–2022», Voronezh, 2022, 67–71

[7] Gladyshev Yu. A., Loshkareva E. A., “Ob odnom metode postroeniya klassa reshenii obobschennoi sistemy uravnenii elektromagnitnogo polya”, Nauch. tr. Kaluzh. gos. un-ta im. K. E. Tsiolkovskogo. Ser. Estestv. tekhn. nauki., 2021, 153–162

[8] Gladyshev Yu. A., Loshkareva E. A., “O postroenii obobschennykh stepenei dlya uravneniya kvantovoi elektrodinamiki Diraka”, Mat. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach», Voronezh, 2021, 70–72

[9] Gladyshev Yu. A., Loshkareva E. A., “O prilozhenii metoda obobschennykh stepenei Bersa dlya resheniya uravneniya Diraka”, Mat. Mezhdunar. konf. «Matematicheskie idei P. L. Chebysheva i ikh prilozheniya k sovremennym problemam estestvoznaniya», Kaluga, 2021, 300–301

[10] Gladyshev Yu. A., Loshkareva E. A., “Ob ispolzovanii apparata obobschennykh stepenei Bersa pri postroenii reshenii kraevykh zadach teorii perenosa metodom Fure”, Vestn. Kaluzh. un-ta., 2018, no. 3, 53–57

[11] Gladyshev Yu. A., Loshkareva E. A., “Ob odnom metode resheniya kraevykh zadach teorii teploprovodnosti v mnogosloinoi srede”, Nauch. tr. Kaluzh. gos. un-ta im. K. E. Tsiolkovskogo. Ser. Estestv. tekhn. nauki., 2017, 44–47

[12] Gladyshev Yu. A., Loshkareva E. A. O nekotorykh novykh metodakh resheniya kraevykh zadach teorii perenosa v neodnorodnykh tverdykh plastinakh i oboblochkakh, Vestn. Kaluzh. un-ta., 2017, no. 2, 23–26

[13] Gladyshev Yu. A., Loshkareva E. A., “Metody postroeniya reshenii osnovnykh zadach teorii perenosa na sisteme kontaktiruyuschikh sterzhnei”, Vestn. Kaluzh. un-ta., 2014, no. 1, 10–13

[14] Gladyshev Yu. A., Loshkareva E. A., “Ob odnom metode postroeniya polya temperatur v tsilindre pri nalichii raspredelennykh teplovykh istochnikov”, Nauch. tr. Kaluzh. gos. un-ta im. K. E. Tsiolkovskogo. Ser. Estestv. tekhn. nauki., 2019, 275–279

[15] Gladyshev Yu. A., Loshkareva E. A., Stamov R. A., “Ob odnom variante metoda obobschennykh stepenei Bersa”, Sb. tr. Mezhdunar. nauch. konf. «Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki» (Voronezh, 13-15 dekabrya 2021 g.), Voronezh, 2022, 45–52

[16] Kanareikin A. I., “Primenenie matematicheskogo apparata Bersa k resheniyu zadachi teploprovodnosti”, Nauch. tr. Kaluzh. gos. un-ta im. K. E. Tsiolkovskogo. Ser. Estestv. tekhn. nauki., 2018, 175–178