Boundary-value problems with shift and conjugation and corresponding systems of singular integral equations for bianalytic functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 47-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a system of singular integral equations with a Carleman shift corresponding to a multielement boundary-value problem for bianalytic functions. The results obtained are applicable to the solution of the main problems of the theory of elasticity in the contact interaction of bodies with various elastic properties.
Keywords: singular equation, boundary-value problem, bianalytic function.
@article{INTO_2023_226_a4,
     author = {A. M. Volodchenkov and A. V. Yudenkov},
     title = {Boundary-value problems with shift and conjugation and corresponding systems of singular integral equations for bianalytic functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {47--53},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a4/}
}
TY  - JOUR
AU  - A. M. Volodchenkov
AU  - A. V. Yudenkov
TI  - Boundary-value problems with shift and conjugation and corresponding systems of singular integral equations for bianalytic functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 47
EP  - 53
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a4/
LA  - ru
ID  - INTO_2023_226_a4
ER  - 
%0 Journal Article
%A A. M. Volodchenkov
%A A. V. Yudenkov
%T Boundary-value problems with shift and conjugation and corresponding systems of singular integral equations for bianalytic functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 47-53
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a4/
%G ru
%F INTO_2023_226_a4
A. M. Volodchenkov; A. V. Yudenkov. Boundary-value problems with shift and conjugation and corresponding systems of singular integral equations for bianalytic functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 47-53. http://geodesic.mathdoc.fr/item/INTO_2023_226_a4/

[1] Balk M. B., “Polianaliticheskie funktsii i ikh obobscheniya”, Itogi nauki tekhn. Sovr. Probl. mat. Fundam. napr., 85 (1991), 187–246

[2] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[3] Lekhnitskii G. S., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977

[4] Litvinchuk G. S., Kraevye zadachi i singulyarnye uravneniya so sdvigom, Nauka, M., 1977, 448 | Zbl

[5] Maksimova L. A., “Obobschennye sistemy singulyarnykh integralnykh uravnenii Shermana so sdvigom v ploskoi teorii uprugosti”, Vestn. Chuvash. gos. ped. un-ta im. I. Ya. Yakovleva. Ser. Mekh. predel. sostoyaniya., 2:28 (2016), 15–23

[6] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966 | MR

[7] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[8] Oksendal B., Stokhasticheskie differentsialnye uravneniya, Mir, M., 2003

[9] Yudenkov A. V., Volodchenkov A. M., Rimskaya L. P., Matematicheskoe modelirovanie na osnove teorii potentsiala, M., 2020, 152

[10] Rasulov K. M., “On the uniqueness of the solution of the Dirichlet boundary-value problem for quasiharmonic functions in a non-unit disk”, Lobachevskii J. Math., 39:1 (2018), 142–145 | DOI | MR | Zbl

[11] Yudenkov A. V., Volodchenkov A. M., Rimskaya L. P., “Stability of systems of singular integral equations with Cauchy kernel”, T-Comm., 14:9 (2020), 48–55 | DOI