Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_226_a2, author = {V. E. Berezovskii and S. V. Leshchenko and J. Mike\v{s}}, title = {On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the {Riemann} tensor}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {23--33}, publisher = {mathdoc}, volume = {226}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/} }
TY - JOUR AU - V. E. Berezovskii AU - S. V. Leshchenko AU - J. Mikeš TI - On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 23 EP - 33 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/ LA - ru ID - INTO_2023_226_a2 ER -
%0 Journal Article %A V. E. Berezovskii %A S. V. Leshchenko %A J. Mikeš %T On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 23-33 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/ %G ru %F INTO_2023_226_a2
V. E. Berezovskii; S. V. Leshchenko; J. Mikeš. On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 23-33. http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/
[1] Aminova A. V., Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003
[2] Berezovskii V. E., Guseva N. I., Mikesh I., “O chastnom sluchae pochti geodezicheskikh otobrazhenii pervogo tipa prostranstv affinnoi svyaznosti, pri kotorom sokhranyaetsya nekotoryi tenzor”, Mat. zametki., 98:3 (2015), 463–466 | DOI | MR | Zbl
[3] Berezovskii V. E., Guseva N. I., Mikesh I., “Geodezicheskie otobrazheniya ekviaffinnykh i Richchi-simmetricheskikh prostranstv”, Mat. zametki., 110:2 (2021), 309–312 | DOI | MR | Zbl
[4] Berezovskii V. E., Mikesh I., “Pochti geodezicheskie otobrazheniya tipa $\pi_1$ na obobschenno richchi-simmetricheskie prostranstva”, Uch. zap. Kazan. gos. un-ta. Ser. Fiz.-mat. nauki., 151:4 (2009), 9–14 | Zbl
[5] Berezovskii V. E., Mikesh I., “O kanonicheskikh pochti geodezicheskikh otobrazheniyakh pervogo tipa prostranstv affinnoi svyaznosti”, Izv. vuzov. Mat., 2014, no. 2, 3–8 | MR | Zbl
[6] Berezovskii V. E., Mikesh I., Khuda G., Chepurnaya E. E., “Kanonicheskie pochti geodezicheskie otobrazheniya, sokhranyayuschie tenzor proektivnoi krivizny”, Izv. vuzov. Mat., 2017, no. 6, 3–8 | MR
[7] Vavrzhikova Kh., Mikesh I., Pokorna O., Starko G., “Ob osnovnykh uravneniyakh pochti geodezicheskikh otobrazhenii $\pi_2(e)$”, Izv. vuzov. Mat., 2007, no. 1, 10–15 | MR
[8] Vedenyapin D. V., “Ob $(n{-}2)$-proektivnom prostranstve”, Nauch. dokl. vyssh. shkoly. Fiz.-mat. nauki., 6 (1959), 119–126
[9] Domashev V. V., Mikesh I., “K teorii golomorfno-proektivnykh otobrazhenii kelerovykh prostranstv”, Mat. zametki., 23:2 (1978), 297–303 | MR | Zbl
[10] Kagan V. F., Subproektivnye prostranstva, M., 1961 | MR
[11] Kurbatova I. N., “HP-otobrazheniya H-prostranstv”, Ukr. geom. sb., 27 (1984), 75–83 | Zbl
[12] Kurbatova I. N., “O 4-kvaziplanarnykh otobrazheniyakh pochti kvaternionnykh mnogoobrazii”, Izv. vuzov. Mat., 1986, no. 1, 75–78 | MR | Zbl
[13] Mikesh I., Geodezicheskie otobrazheniya polusimmetricheskikh rimanovykh prostranstv, Dep. v VINITI. — No. 3924-76, 1976
[14] Mikesh I., “O nekotorykh klassakh rimanovykh prostranstv, zamknutykh sootvetstvenno na geodezicheskie otobrazheniya”, VII Vsesoyuz. konf. «Sovremennaya differentsialnaya geometriya», Minsk, 1979, 126
[15] Mikesh I., “O golomorfno-proektivnykh otobrazheniyakh kelerovykh prostranstv”, Ukr. geom. sb., 23 (1980), 90–98 | Zbl
[16] Mikesh I., “O geodezicheskikh otobrazheniyakh Richchi 2-simmetricheskikh rimanovykh prostranstv”, Mat. zametki., 28:2 (1980), 313–317 | MR | Zbl
[17] Mikesh I., “O geodezicheskikh otobrazheniyakh prostranstv Einshteina”, Mat. zametki., 28:6 (1980), 935–938 | MR | Zbl
[18] Mikesh I., “Ob ekvidistantnykh kelerovykh prostranstvakh”, Mat. zametki., 38:4 (1985), 627–633 | MR | Zbl
[19] Mikesh I., “O sasakievykh i ekvidistantnykh kelerovykh prostranstvakh”, Dokl. AN SSSR., 291:1 (1986), 33–36 | MR
[20] Mikesh I., Ginterleitner I., Guseva N. I., “Geodezicheskie otobrazheniya «v tselom» Richchi-ploskikh prostranstv s $n$ polnymi geodezicheskimi liniyami”, Mat. zametki., 108:2 (2020), 306–310 | DOI | MR | Zbl
[21] Mikesh I., Guseva N. I., Peshka P., Ryparova L., “Povorotnye otobrazheniya i proektsii sfery”, Mat. zametki., 110:1 (2021), 151–154 | DOI | MR | Zbl
[22] Mikesh I., Guseva N. I., Peshka P., Ryparova L., “Pochti geodezicheskie otobrazheniya i proektsii sfery”, Mat. zametki., 111:3 (2022), 476–480 | DOI | MR | Zbl
[23] Mikesh I., Sinyukov N. S., “O kvaziplanarnykh otobrazheniyakh prostranstv affinnoi svyaznosti”, Izv. vuzov. Mat., 1983, no. 1, 55–61 | Zbl
[24] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR
[25] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966 | MR
[26] Sinyukov N. S., “O geodezicheskikh otobrazheniyakh rimanovykh mnogoobrazii na simmetricheskie prostranstva”, Dokl. AN SSSR., 98 (1954), 21–23 | MR | Zbl
[27] Sinyukov N. S., “Normalnye geodezicheskie otobrazheniya rimanovykh prostranstv”, Dokl. AN SSSR., 111 (1956), 766–767 | MR | Zbl
[28] Sinyukov N. S., “Ob ekvidistantnykh prostranstvakh”, Vestn. Odessk. un-ta., 1957, 133–135
[29] Sinyukov N. S., “Ob odnom invariantnom preobrazovanii rimanovykh prostranstv s obschimi geodezicheskimi”, Dokl. AN SSSR., 137:6 (1961), 1312–1314 | MR | Zbl
[30] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinosvyaznykh i rimanovykh prostranstv”, Dokl. AN SSSR., 151:4 (1963), 781–782 | MR | Zbl
[31] Sinyukov N. S., “K teorii geodezicheskogo otobrazheniya rimanovykh prostranstv”, Dokl. AN SSSR., 169:4 (1966), 770–772 | MR | Zbl
[32] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i $e$-struktury”, Mat. zametki., 7:4 (1970), 449–459 | MR | Zbl
[33] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979
[34] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinno-svyaznykh i rimanovykh prostranstv”, Itogi nauki i tekhn. Ser. Probl. geom., 13 (1982), 3–26 | MR | Zbl
[35] Sobchuk V. S., “Pochti geodezicheskoe otobrazhenie rimanovykh prostranstv na simmetricheskie rimanovy prostranstva”, Mat. zametki., 17:5 (1975), 757–763 | MR
[36] Solodovnikov A. S., “Proektivnye preobrazovaniya rimanovykh prostranstv”, Usp. mat. nauk., 11:4 (1956), 45–116 | MR | Zbl
[37] Solodovnikov A. S., “Prostranstva s obschimi geodezicheskimi”, Tr. semin. vekt. tenz. anal., 11 (1961), 43–102 | MR | Zbl
[38] Solodovnikov A. S., “Geometricheskoe opisanie vsekh vozmozhnykh predstavlenii rimanovoi metriki v forme Levi-Chivity”, Tr. semin. vekt. tenz. anal., 12 (1963), 131–173 | MR | Zbl
[39] Shadnyi V. S., “Pochti geodezicheskoe otobrazhenie rimanovykh prostranstv na prostranstva postoyannoi krivizny”, Mat. zametki., 25:2 (1979), 293–298 | MR
[40] Shapiro Ya. L., “O kvazigeodezicheskom otobrazhenii”, Izv. vuzov. Mat., 1980, no. 9, 53–55 | Zbl
[41] P. A. Shirokov, Izbrannye trudy po geometrii, Izd-vo Kazan. un-ta, Kazan, 1966 | MR
[42] Shikha M., Mikesh I., “Ob ekvidistantnykh parabolicheski kelerovykh prostranstvakh”, Tr. geom. semin., 22 (1994), 97–107 | MR | Zbl
[43] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948
[44] Yablonskaya N. V., “O spetsialnykh gruppakh pochti geodezicheskikh preobrazovanii prostranstv affinnoi svyaznosti”, Izv. vuzov. Mat., 1986, no. 1, 78–80 | MR | Zbl
[45] Al Lami R. J. K., “Holomorphically projective mappings of compact semisymmetric manifolds”, Acta Univ. Palacki. Olomouc. Fac. Rerum Nat. Math., 49:1 (2010), 49–53 | MR | Zbl
[46] Al Lami R. J. K., Škodová M., Mikeš J., “On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces”, Arch. Math. (Brno)., 42:5 (2006), 291–299 | MR | Zbl
[47] Aminova A. V., “Projective transformations of pseudo-Riemannian manifolds”, J. Math. Sci., 113:3 (2003), 367–470 | DOI | MR | Zbl
[48] Belova O., Mikeš J., “Almost geodesics and special affine connection”, Res. Math., 75:3 (2020), 127 | DOI | MR | Zbl
[49] Berezovskii V. E., Mikeš J., Rýparová L., Sabykanov A., “On canonical almost geodesic mappings of type $\pi_2(e)$”, Mathematics., 8:1 (2020), 54 | DOI
[50] Belova O., Mikeš J., Sherkuziyev M., Sherkuziyeva N., “An analytical inflexibility of surfaces attached along a curve to a surface regarding a point and plane”, Res. Math., 76:2 (2021), 56 | DOI | MR | Zbl
[51] Belova O., Mikeš J., Strambach K., “Complex curves as lines of geometries”, Res. Math., 71:1-2 (2017), 145–165 | DOI | MR | Zbl
[52] Belova O., Mikeš J., Strambach K., “Geodesics and almost geodesics curves”, Res. Math., 73:4 (2018), 154 | DOI | MR | Zbl
[53] Belova O. et al., “Our friend and mathematician Karl Strambach”, Res. Math., 75:2 (2020), 69 | DOI | MR | Zbl
[54] Berezovski V., Bácsó S., Mikeš J., “Almost geodesic mappings of affinely connected spaces that preserve the Riemannian curvature”, Ann. Math. Inf., 45 (2015), 3–10 | MR | Zbl
[55] Berezovski V. E., Cherevko Y., Leshchenko S., Mikeš J., “Canonical almost geodesic mappings of the first type of spaces with affine connection onto generalized 2-Ricci-symmetric spaces”, Geom. Integr. Quant., 22 (2021), 78–87 | DOI | MR | Zbl
[56] Berezovski V. E., Cherevko Y., Rýparová L., “Conformal and geodesic mappings onto some special spaces”, Mathematics., 7:8 (2019), 664 | DOI
[57] Berezovski V. E., Jukl M., Juklová L., “Almost geodesic mappings of the first type onto symmetric spaces”, Proc. 16th Conf. APLIMAT 2017, Bratislava, 2017, 126–131
[58] Berezovski V. E., Mikeš J., “On the classification of almost geodesic mappings of affine-connected spaces”, Proc. Conf. “Differential Geometry and Applications” (Dubrovnik, 1988), 1989, 41–48 | MR
[59] Berezovski V. E., Mikeš J., “On a classification of almost geodesic mappings of affine connection spaces”, Acta Univ. Palacki. Olomuc. Math., 35 (1996), 21–24 | MR | Zbl
[60] Berezovski V. E., Mikeš J., “On almost geodesic mappings of the type $\pi_1$ of Riemannian spaces preserving a system of $n$-orthogonal hypersurfaces”, Rend. Circ. Mat. Palermo., 59 (1999), 103–108 | MR | Zbl
[61] Berezovski V. E., Mikeš J., “Almost geodesic mappings of spaces with affine connection”, J. Math. Sci., 207:3 (2015), 389–409 | DOI | MR | Zbl
[62] Berezovski V. E., Mikeš J., Radulović Ž., “Almost geodesic mappings of type $\pi_1^*$ of spaces with affine connection”, Math. Montisnigri., 52 (2021), 30–36 | DOI | MR | Zbl
[63] Berezovski V. E., Mikeš J., Vanžurová A., “Almost geodesic mappings onto generalized Ricci-symmetric manifolds”, Acta Math. Acad. Paedag. Nyiregyhaziensis., 26 (2010), 221–230 | MR | Zbl
[64] Berezovski V. E., Mikeš J., Vanžurová A., “Fundamental PDE's of the canonical almost geodesic mappings of type $\pi_1$”, Bull. Malays. Math. Sci. Soc., 37 (2014), 647–659 | MR | Zbl
[65] Chudá H., Guseva N., Peška P., “On $F^\varepsilon_2$-planar mappings with function $\varepsilon$ of (pseudo-) Riemannian manifolds”, Filomat., 31:9 (2017), 2683–2689 | DOI | MR | Zbl
[66] Chudá H., Shiha M., “Conformal holomorphically projective mappings satisfying a certain initial condition”, Miskolc. Math. Notes., 14:2 (2013), 569–574 | DOI | MR | Zbl
[67] Ćirić M. S., Zlatanović M. Lj., Stanković M. S., Velimirović Lj. S., “On geodesic mappings of equidistant generalized Riemannian spaces”, Appl. Math. Comput., 218:12 (2012), 6648–6655 | MR | Zbl
[68] Eisenhart L. P., Non-Riemannian Geometry, Dover, Mineola, NY, 2005 | MR | Zbl
[69] Eisenhart L. P., Continuous Groups of Transformations, Dover, New York, 1961 | MR | Zbl
[70] Hinterleitner I., Mikeš J., “On $F$-planar mappings of spaces with affine connections”, Note Mat., 27:1 (2007), 111–118 | MR | Zbl
[71] Hinterleitner I., Mikeš J., “Geodesic mappings onto Weyl manifolds”, J. Appl. Math., 2:1 (2009), 125–133 | MR
[72] Hinterleitner I., Mikeš J., “Fundamental equations of geodesic mappings and their generalizations”, J. Math. Sci., 174:5 (2011), 537–554 | DOI | MR | Zbl
[73] Hinterleitner I., Mikeš J., “Projective equivalence and spaces with equiaffine connection”, J. Math. Sci., 177 (2011), 546–550 | DOI | MR | Zbl
[74] Hinterleitner I., Mikeš J., “Holomorphically projective mappings onto complete Kähler manifolds”, Proc. XVI Geom. Seminar (Univ. Niš, Serbia), 2011, 56–64 | MR
[75] Hinterleitner I., Mikeš J., “Geodesic mappings and Einstein spaces”, Trends Math., 19 (2013), 331–335 | MR
[76] Hinterleitner I., Mikeš J., “Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability”, Miskolc. Math. Notes., 14:2 (2013), 575–582 | DOI | MR | Zbl
[77] Hinterleitner I., Mikeš J., Peška P., “Fundamental equations of $F$-planar mappings”, Lobachevskii J. Math., 38:4 (2017), 653–659 | DOI | MR | Zbl
[78] Kozak A., Borowiec A., “Palatini frames in scalar-tensor theories of gravity”, Eur. Phys. J., 79 (2019), 335 | DOI
[79] Křížek J., Mikeš J., Peška P., Rýparová L., “Extremals and isoperimetric extremals of the rotations in the plane”, Geom. Integr. Quant., 22 (2021), 136–141 | DOI | MR | Zbl
[80] Levi-Civita T., “Sulle trasformazioni dello equazioni dinamiche”, Ann. Mat., 24 (1896), 252–300
[81] Mikeš J., “Geodesic mappings of affine-connected and Riemannian spaces”, J. Math. Sci., 78:3 (1996), 311–333 | DOI | MR | Zbl
[82] Mikeš J., “Holomorphically projective mappings and their generalizations”, J. Math. Sci., 89:3 (1998), 1334–1353 | DOI | MR | Zbl
[83] Mikeš J., Berezovski V., “Geodesic mappings of affine-connected spaces onto Riemannian spaces”, Colloq. Math. Soc. J. Bolyai., 56 (1989), 491–494 | MR
[84] Mikeš J., Pokorná O., Starko G. A., Vavříková H., “On almost geodesic mappings $\pi_2(e)$, $e=\pm 1$”, Proc. Conf. APLIMAT, Bratislava, 2005, 315–321
[85] Mikeš J., Shiha M., Vanžurová A., “Invariant objects by holomorhpically projective mappings of parabolically Kähler spaces”, J. Appl. Math., 2 (2009), 135–141
[86] Mikeš J., Vanžurová A., Hinterleitner I., Geodesic Mappings and Some Generalizations, Palacky Univ. Press, Olomouc, 2009 | MR | Zbl
[87] Mikeš J. et al., Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, 2015 | MR | Zbl
[88] Mikeš J. et al., Differential Geometry of Special Mappings. 2nd edition, Palacky Univ. Press, Olomouc, 2019 | MR | Zbl
[89] Najdanović M. S., Zlatanović M. Lj., Hinterleitner I., “Conformal and geodesic mappings of generalized equidistant spaces”, Publ. Inst. Math., Nouv. Sér., 98 (112) (2015), 71–84 | DOI | MR | Zbl
[90] Otsuki T., Tashiro Y., “On curves in Kaehlerian spaces”, Math. J. Okayama Univ., 4 (1954), 57–78 | MR | Zbl
[91] Peška P., Mikeš J., Rýparová L., “Almost geodesic curves as intersections of $n$-dimensional spheres”, Lobachevskii J. Math., 43:3 (2022), 687–690 | DOI | MR | Zbl
[92] Petrov A. Z., “Modeling of physical fields”, Gravit. Gen. Relat., 4 (1968), 7–21 | MR
[93] Petrović M. Z., “Canonical almost geodesic mappings of type $_\theta\pi_2(0,F)$, $\theta\in\{1,2\}$ between generalized parabolic Kähler manifolds”, Miskolc. Math. Notes., 19 (2018), 469–482 | DOI | MR | Zbl
[94] Petrović M. Z., “Special almost geodesic mappings of the second type between generalized Riemannian spaces”, Bull. Malays. Math. Sci. Soc., 42 (2019), 707–727 | DOI | MR | Zbl
[95] Petrović M. Z., Stanković M. S., “Special almost geodesic mappings of the first type of non-symmetric affine connection spaces”, Bull. Malays. Math. Sci. Soc., 40 (2017), 1353–1362 | DOI | MR | Zbl
[96] Prvanović M., “Holomorphically projective transformations in a locally product space”, Math. Balk., 1 (1971), 195–213 | MR | Zbl
[97] Prvanović M., “Holomorphically semi-symmetric connexions”, Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu., 9 (1979), 91–99 | MR | Zbl
[98] Prvanović M., “A note on holomorphically projective transformations of the Kähler spaces”, Tensor., 35 (1981), 99-104 | MR | Zbl
[99] Radulovich Zh., Mikeš J., Gavril'chenko M. L., Geodesic Mappings and Deformations of Riemannian Spaces, CID, Podgorica, 1997 | MR | Zbl
[100] Rýparová L., Mikeš J., “On geodesic bifurcations”, Geom. Integr. Quant., 18 (2017), 217–224 | DOI | MR
[101] Rýparová L., Mikeš J., “Bifurcation of closed geodesiscs”, Geom. Integr. Quant., 19 (2018), 188–192 | DOI | MR | Zbl
[102] Rýparová L., Mikeš J., Sabykanov A., “On geodesic bifurcations of product spaces”, J. Math. Sci., 239:1 (2019), 86–91 | DOI | MR | Zbl
[103] Shandra I. G., Mikeš J., “Geodesic mappings of semi-Riemannian manifolds with a degenerate metric”, Mathematics., 10:1 (2022), 154 | DOI
[104] Shiha M., “On the theory of holomorphically-projective mappings of parabolically-Kählerian spaces”, Proc. 5th Int. Conf. “Differential Geometry and Its Applications” (Opava, Czechoslovakia, August 24-28, 1992), eds. Kowalski O. et al., Silesian Univ., Opava, 1993, 157–160 | MR | Zbl
[105] Shiha M., Juklová L., Mikeš J., “Holomorphically projective mappings onto Riemannian tangent-product spaces”, J. Appl. Math. Bratislava., 5:3 (2012), 259–266
[106] Shiha M., Mikeš J., “On holomorphically projective flat parabolically Kählerian spaces”, Proc. Conference “Contemporary Geometry and Related Topics” (Belgrade, Serbia and Montenegro, June 26–-July 2, 2005), eds. Bokan N. et al., Univ. Belgrade, Belgrade, 2006, 467–474 | MR | Zbl
[107] Sobchuk V. S., Mikeš J., Pokorná O., “On almost geodesic mappings $\pi_2$ between semisymmetric Riemannian spaces”, Novi Sad J. Math., 9 (1999), 309–312 | MR
[108] Stanković M. S., “On canonic almost geodesic mappings of the second type of affine spaces”, Filomat., 13 (1999), 105–144 | MR | Zbl
[109] Stanković M. S., Ćirić M. S., Zlatanović M. Lj., “Geodesic mappings of equiaffine and anti-equiaffine general affine connection spaces preserving torsion”, Filomat., 26:3 (2012), 439–451 | DOI | MR | Zbl
[110] Stanković M. S., Minčić S. M., Zlatanović M. Lj., Velimirović Lj. S., “On equitorsion geodesic mappings of general affine connection spaces”, Rend. Semin. Mat. Univ. Padova., 124 (2010), 77–90 | DOI | MR | Zbl
[111] Stanković M. S., Zlatanović M. Lj., Velimirović Lj. S., “Equitorsion holomorphically projective mappings of generalized Kählerian space of the second kind”, Int. Electron. J. Geom., 3:2 (2010), 26–39 | MR | Zbl
[112] Stanković M. S., Zlatanović M. L., Vesić N. O., “Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity”, Czech. Math. J., 65 (2015), 787–799 | DOI | MR | Zbl
[113] Stanković M. S., Zlatanović M. L., Vesić N. O., “Some properties of ET-projective tensors obtained from Weyl projective tensor”, Filomat., 29:3 (2015), 573–584 | DOI | MR | Zbl
[114] Stepanov S., Mikeš J., “Application of the Hopf maximum principle to the theory of geodesic mappings”, Kragujevac J. Math., 45:5 (2021), 781–786 | DOI | MR | Zbl
[115] Thomas J. M., “Asymmetric displacement of a vector”, Trans. Am. Math. Soc., 28:4 (1926), 658–670 | DOI | MR
[116] Thomas T. Y., “On projective and equiprojective geometries of paths”, Natl. Acad. Sci. U.S.A., 11 (1925), 198–203 | MR
[117] Thomas T. Y., “Note on the projective geometry of paths”, Bull. Am. Math. Soc., 31 (1925), 318–322 | DOI | MR
[118] Vesić N. O., Stanković M. S., “Invariants of special second-type almost geodesic mappings of generalized Riemannian space”, Mediterr. J. Math., 15:60 (2018) | MR | Zbl
[119] Vesić N. O., Velimirović L. S., Stanković M. S., “Some invariants of equitorsion third type almost geodesic mappings”, Mediterr. J. Math., 13 (2016), 4581–4590 | DOI | MR | Zbl
[120] Vesić N. O., Zlatanović M. Lj., “Invariants for geodesic and F-planar mappings of generalized Riemannian spaces”, Quaest. Math., 44:7 (2021), 983–996 | MR | Zbl
[121] Vesić N. O., Zlatanović M. Lj., Velimirović A. M., “Projective invariants for equitorsion geodesic mappings of semi-symmetric affine connection spaces”, J. Math. Anal. Appl., 472:2 (2019), 1571–1580 | DOI | MR | Zbl
[122] Vrançeanu G., “Proprietati globale ale spatiilor bui Riemann cu conexiune abina constanta”, Stud. Cerc. Mat. Acad. RPR., 14:1 (1963), 7–22 | Zbl
[123] Weyl H., “Zur Infinitesimalgeometrie Einordnung der projektiven und der konformen Auffassung”, Göttinger Nachrichten., 1921, 99–112
[124] Zlatanović M. Lj., “On equitorsion geodesic mappings of general affine connection spaces onto generalized Riemannian spaces”, Appl. Math. Lett., 24:5 (2011), 665–671 | DOI | MR | Zbl
[125] Zlatanović M. Lj., “New projective tensors for equitorsion geodesic mappings”, Appl. Math. Lett., 25:5 (2012), 890–897 | DOI | MR | Zbl
[126] Zlatanović M. Lj., Hinterleitner I., Najdanović M., “On equitorsion concircular tensors of generalized Riemannian spaces”, Filomat., 28:3 (2014), 463–471 | DOI | MR | Zbl
[127] Zlatanović M. Lj., Hinterleitner I., Najdanović M., “Geodesic mapping onto Kählerian spaces of the first kind”, Czech. Math. J., 64:4 (2014), 1113–1122 | DOI | MR | Zbl
[128] Zlatanović M. Lj., Stanković V., “Geodesic mapping onto Kählerian space of the third kind”, J. Math. Anal. Appl., 450:1 (2017), 480–489 | DOI | MR | Zbl
[129] Zlatanović M. Lj., Velimirović Lj. S., Stanković M. S., “Necessary and sufficient conditions for equitorsion geodesic mapping”, J. Math. Anal. Appl., 435:1 (2016), 578–592 | DOI | MR | Zbl