Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_226_a2, author = {V. E. Berezovskii and S. V. Leshchenko and J. Mike\v{s}}, title = {On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the {Riemann} tensor}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {23--33}, publisher = {mathdoc}, volume = {226}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/} }
TY - JOUR AU - V. E. Berezovskii AU - S. V. Leshchenko AU - J. Mikeš TI - On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 23 EP - 33 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/ LA - ru ID - INTO_2023_226_a2 ER -
%0 Journal Article %A V. E. Berezovskii %A S. V. Leshchenko %A J. Mikeš %T On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 23-33 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/ %G ru %F INTO_2023_226_a2
V. E. Berezovskii; S. V. Leshchenko; J. Mikeš. On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 23-33. http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/