On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 23-33

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain general equations for canonical first-type almost geodesic mappings of affinely connected spaces under which the Riemann tensor is preserved. These equations are reduced to a closed system of Cauchy-type equations in covariant derivatives. The number of essential parameters on which the general solution of the resulting system of equations depends is established. A particular case of such mappings is considered and examples of almost geodesic mappings of the first type of flat space onto flat space are given.
Keywords: almost geodesic mapping, basic equation, space of affine connection.
@article{INTO_2023_226_a2,
     author = {V. E. Berezovskii and S. V. Leshchenko and J. Mike\v{s}},
     title = {On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the {Riemann} tensor},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {23--33},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/}
}
TY  - JOUR
AU  - V. E. Berezovskii
AU  - S. V. Leshchenko
AU  - J. Mikeš
TI  - On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 23
EP  - 33
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/
LA  - ru
ID  - INTO_2023_226_a2
ER  - 
%0 Journal Article
%A V. E. Berezovskii
%A S. V. Leshchenko
%A J. Mikeš
%T On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 23-33
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/
%G ru
%F INTO_2023_226_a2
V. E. Berezovskii; S. V. Leshchenko; J. Mikeš. On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 23-33. http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/