On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 23-33
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we obtain general equations for canonical first-type almost geodesic mappings of affinely connected spaces under which the Riemann tensor is preserved. These equations are reduced to a closed system of Cauchy-type equations in covariant derivatives. The number of essential parameters on which the general solution of the resulting system of equations depends is established. A particular case of such mappings is considered and examples of almost geodesic mappings of the first type of flat space onto flat space are given.
Keywords:
almost geodesic mapping, basic equation, space of affine connection.
@article{INTO_2023_226_a2,
author = {V. E. Berezovskii and S. V. Leshchenko and J. Mike\v{s}},
title = {On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the {Riemann} tensor},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {23--33},
publisher = {mathdoc},
volume = {226},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/}
}
TY - JOUR AU - V. E. Berezovskii AU - S. V. Leshchenko AU - J. Mikeš TI - On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 23 EP - 33 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/ LA - ru ID - INTO_2023_226_a2 ER -
%0 Journal Article %A V. E. Berezovskii %A S. V. Leshchenko %A J. Mikeš %T On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 23-33 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/ %G ru %F INTO_2023_226_a2
V. E. Berezovskii; S. V. Leshchenko; J. Mikeš. On canonical first-type almost geodesic mappings of affinely connected spaces that preserve the Riemann tensor. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 23-33. http://geodesic.mathdoc.fr/item/INTO_2023_226_a2/