Scattering problem for one non-self-adjoint Sturm--Liouville operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 120-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The scattering problem is considered for a class of second-order differential equations on a semi-infinite interval with a nonlinear spectral parameter in the boundary condition. The scattering data of the problem are determined and the fundamental equation of the inverse scattering problem is obtained.
Keywords: normalization polynomial, scattering function, scattering data, fundamental equation.
@article{INTO_2023_226_a11,
     author = {R. G. Farzullazadeh and Kh. R. Mamedov},
     title = {Scattering problem for one non-self-adjoint {Sturm--Liouville} operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {120--126},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/}
}
TY  - JOUR
AU  - R. G. Farzullazadeh
AU  - Kh. R. Mamedov
TI  - Scattering problem for one non-self-adjoint Sturm--Liouville operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 120
EP  - 126
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/
LA  - ru
ID  - INTO_2023_226_a11
ER  - 
%0 Journal Article
%A R. G. Farzullazadeh
%A Kh. R. Mamedov
%T Scattering problem for one non-self-adjoint Sturm--Liouville operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 120-126
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/
%G ru
%F INTO_2023_226_a11
R. G. Farzullazadeh; Kh. R. Mamedov. Scattering problem for one non-self-adjoint Sturm--Liouville operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 120-126. http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/