Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_226_a11, author = {R. G. Farzullazadeh and Kh. R. Mamedov}, title = {Scattering problem for one non-self-adjoint {Sturm--Liouville} operator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {120--126}, publisher = {mathdoc}, volume = {226}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/} }
TY - JOUR AU - R. G. Farzullazadeh AU - Kh. R. Mamedov TI - Scattering problem for one non-self-adjoint Sturm--Liouville operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 120 EP - 126 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/ LA - ru ID - INTO_2023_226_a11 ER -
%0 Journal Article %A R. G. Farzullazadeh %A Kh. R. Mamedov %T Scattering problem for one non-self-adjoint Sturm--Liouville operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 120-126 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/ %G ru %F INTO_2023_226_a11
R. G. Farzullazadeh; Kh. R. Mamedov. Scattering problem for one non-self-adjoint Sturm--Liouville operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 120-126. http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/
[1] Levitan B. M., “K resheniyu obratnoi zadachi kvantovoi teorii rasseyaniya”, Mat. zametki., 17:4 (1975), 611–624 | MR | Zbl
[2] Levitan B. M., Obratnye zadachi Shturma—Liuvillya, Nauka, M., 1984 | MR
[3] Lyantse V. E., “Analog obratnoi zadachi teorii rasseyaniya dlya nesamosopryazhennogo operatora”, Mat. sb., 72:4 (1967), 537–557 | Zbl
[4] Mamedov Kh. R., “Edinstvennost resheniya obratnoi zadachi teorii rasseyaniya dlya operatora Shturma—Liuvillya so spektralnym parametrom v granichnom uslovii”, Mat. zametki., 74:1 (2003), 142–146 | DOI | MR | Zbl
[5] Mamedov Kh. R., Demirbilek U., “Ob obratnoi zadache rasseyaniya dlya odnogo klassa operatorov Shturma—Liuvillya”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 200 (2021), 81–86 | DOI
[6] Marchenko V. A., Operatory Shturma—Liuvilya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR
[7] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[8] Yurko V. A., “Obratnaya zadacha dlya puchkov differentsialnykh operatorov”, Mat. sb., 191:10 (2000), 137–160 | DOI | Zbl
[9] Cohen D. S., “An integral transform associated with boundary conditions containing an eigenvalue parameter”, SIAM J. Appl. Math., 14 (1966), 1164–1175 | DOI | MR | Zbl
[10] Col A., Mamedov Kh. R., “On an inverse scattering problem for a class of Dirac operators with spectral parameter in the boundary condition”, J. Math. Anal. Appl., 393 (2012), 470–478 | DOI | MR | Zbl
[11] Mamedov Kh. R., “On the inverse problem for Sturm-Liouville operator with a nonlinear spectral parameter in the boundary condition”, J. Korean Math. Soc., 46 (2009), 1243–1254 | DOI | MR | Zbl
[12] Mamedov Kh. R., Kosar P. A., “Inverse scattering problem for Sturm–Liouville operator with a nonlinear dependence on the spectral parameter in the boundary condition”, Math. Meth. Appl. Sci., 34:2, 231–241 | DOI | MR | Zbl
[13] Mamedov Kh. R., Menken H., “On the inverse problem of scattering theory for a differential operator of the second order”, Funct. Anal. Appl., 197 (2004), 185–194 | MR | Zbl
[14] McLaughlin J. R., Polyakov P. L., “On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues”, J. Differ. Equations., 107 (1994), 351–382 | DOI | MR | Zbl
[15] Megrabov A. G., Forward and Inverse Problems for Hyperbolic, Elliptic and Mixed Type Equations, VSP, Boston–Utrecht, 2003 | MR | Zbl
[16] Yang Q., Wang W., “Asymptotic behavior of a discontinuous differential operator with transmission conditions”, Math. Appl., 24 (2011), 15–24 | MR