Scattering problem for one non-self-adjoint Sturm--Liouville operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 120-126
Voir la notice de l'article provenant de la source Math-Net.Ru
The scattering problem is considered for a class of second-order differential equations on a semi-infinite interval with a nonlinear spectral parameter in the boundary condition. The scattering data of the problem are determined and the fundamental equation of the inverse scattering problem is obtained.
Keywords:
normalization polynomial, scattering function, scattering data, fundamental equation.
@article{INTO_2023_226_a11,
author = {R. G. Farzullazadeh and Kh. R. Mamedov},
title = {Scattering problem for one non-self-adjoint {Sturm--Liouville} operator},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {120--126},
publisher = {mathdoc},
volume = {226},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/}
}
TY - JOUR AU - R. G. Farzullazadeh AU - Kh. R. Mamedov TI - Scattering problem for one non-self-adjoint Sturm--Liouville operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 120 EP - 126 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/ LA - ru ID - INTO_2023_226_a11 ER -
%0 Journal Article %A R. G. Farzullazadeh %A Kh. R. Mamedov %T Scattering problem for one non-self-adjoint Sturm--Liouville operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 120-126 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/ %G ru %F INTO_2023_226_a11
R. G. Farzullazadeh; Kh. R. Mamedov. Scattering problem for one non-self-adjoint Sturm--Liouville operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 120-126. http://geodesic.mathdoc.fr/item/INTO_2023_226_a11/