Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_226_a0, author = {V. R. Barseghyan and S. V. Solodusha}, title = {Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--15}, publisher = {mathdoc}, volume = {226}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a0/} }
TY - JOUR AU - V. R. Barseghyan AU - S. V. Solodusha TI - Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 3 EP - 15 VL - 226 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_226_a0/ LA - ru ID - INTO_2023_226_a0 ER -
%0 Journal Article %A V. R. Barseghyan %A S. V. Solodusha %T Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 3-15 %V 226 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_226_a0/ %G ru %F INTO_2023_226_a0
V. R. Barseghyan; S. V. Solodusha. Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 3-15. http://geodesic.mathdoc.fr/item/INTO_2023_226_a0/
[1] Barsegyan V. R., “Zadacha optimalnogo upravleniya kolebaniyami struny s nerazdelennymi usloviyami na funktsii sostoyaniya v zadannye promezhutochnye momenty vremeni”, Avtomat. telemekh., 2020, no. 2, 36–47 | Zbl
[2] Barsegyan V. R., “Optimalnoe granichnoe upravlenie smescheniem na dvukh kontsakh pri kolebanii sterzhnya, sostoyaschego iz dvukh uchastkov raznoi plotnosti i uprugosti”, Differ. uravn. protsessy upravl., 2022, no. 2, 41–54 | Zbl
[3] Barsegyan V. R., Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami, Nauka, M., 2016
[4] Barsegyan V. R., Barsegyan T. V., “Kriterii upravlyaemosti lineinykh statsionarnykh sistem peremennoi struktury”, Tr. VIII Mezhdunar. konf. «Problemy dinamiki vzaimodeistviya deformiruemykh sred» (Goris-Stepanakert, Armeniya, 22-26 sentyabrya 2014 g.), 2014, 83–87
[5] Barsegyan V. R., Solodusha S. V., “Zadacha granichnogo upravleniya kolebaniyami struny smescheniem na dvukh kontsakh s zadannymi sostoyaniyami v promezhutochnye momenty vremeni”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 212 (2022), 30–42
[6] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965
[7] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti uprugikh kolebanii posledovatelno soedinennykh ob'ektov s raspredelennymi parametrami”, Tr. in-ta mat. mekh. UrO RAN., 17:1 (2011), 85–92
[8] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti kolebanii seti iz svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Zh. vychisl. mat. mat. fiz., 49:5 (2009), 786–796 | MR | Zbl
[9] Ilin V. A., “Optimizatsiya granichnogo upravleniya kolebaniyami sterzhnya, sostoyaschego iz dvukh raznorodnykh uchastkov”, Dokl. RAN., 440:2 (2011), 159–163 | Zbl
[10] Ilin V. A., “O privedenii v proizvolno zadannoe sostoyanie kolebanii pervonachalno pokoyaschegosya sterzhnya, sostoyaschego iz dvukh raznorodnykh uchastkov”, Dokl. RAN., 435:6 (2010), 732–735 | Zbl
[11] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968
[12] Kuleshov A. A., “Smeshannye zadachi dlya uravneniya prodolnykh kolebanii neodnorodnogo sterzhnya i uravneniya poperechnykh kolebanii neodnorodnoi struny, sostoyaschikh iz dvukh uchastkov raznoi plotnosti i uprugosti”, Dokl. RAN., 442:5 (2012), 594–597 | Zbl
[13] Lvova N. N., “Optimalnoe upravlenie nekotoroi raspredelennoi neodnorodnoi kolebatelnoi sistemoi”, Avtomat. telemekh., 1973, no. 10, 22–32 | Zbl
[14] Provotorov V. V., “Postroenie granichnykh upravlenii v zadache o gashenii kolebanii sistemy iz $m$ strun”, Vestn. S.-Peterburg. un-ta. Prikl. mat. Inform. Protsessy upravl., 2012, no. 1, 60–69
[15] Rogozhnikov A. M., “Issledovanie smeshannoi zadachi, opisyvayuschei protsess kolebanii sterzhnya, sostoyaschego iz neskolkikh uchastkov s proizvolnymi dlinami”, Dokl. RAN., 444:5 (2012), 488–491 | MR | Zbl
[16] Kholodovskii S. E., Chukhrii P. A., “Zadacha o dvizhenii neogranichennoi kusochno-odnorodnoi struny”, Uch. zap. Zabaikal. gos. un-ta. Fiz. Mat. Tekhn. Tekhnol., 13:4 (2018), 42–50
[17] Barseghyan V. R., “Control problem of string vibrations with inseparable multipoint conditions at intermediate points in time”, Mech. Solid., 54:8 (2019), 1216–1226
[18] Barseghyan V. R., “The problem of optimal control of string vibrations”, Int. Appl. Mech., 56:4 (2020), 471–480 | MR
[19] Barseghian V. R., “String vibration observation problem”, Proc. I Int. Conf. “Control of Oscillations and Chaos” (August 27-29, 1997, St. Petersburg, Russia), 1997, 309–311
[20] Barseghyan V. R., “On the controllability and observability of linear dynamic systems with variable structure”, 2016 Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (June 1-3, 2016, Moscow, Russia), 2016, 1–4
[21] Barseghyan V. R., Solodusha S. V., “Optimal boundary control of string vibrations with given shape of deflection at a certain moment of time”, Proc. Int. Conf. “Mathematical Optimizatopn Theory and Operations Research” MOTOR-2021 (July 5-10, 2021, Irkutsk, Russia), 2021, 299–313 | MR | Zbl
[22] Barseghyan V. R., Solodusha S. V., “On one problem in optimal boundary control for string vibrations with a given velocity of points at an intermediate moment of time”, Proc. Int. Russian Automation Conference “RusAutoCon” (September 5-11, 2021, Sochi, Russia), IEEE, 2021, 343–349 | MR
[23] Ben Amara J., Beldi E., “Boundary controllability of two vibrating strings connected by a point mass with variable coefficients”, SIAM J. Control Optim., 57:5 (2019), 3360–3387 | MR | Zbl
[24] Mercier D., Regnier V., “Boundary controllability of a chain of serially connected Euler–Bernoulli beams with interior masses”, Collect. Math., 60:3 (2009), 307–334 | MR | Zbl