Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider boundary-control problems for a distributed inhomogeneous oscillatory system described by a one-dimensional wave equation with piecewise constant characteristics. We assume that the propagation times for all homogeneous sections are the same. The control is performed by shifting one end with the other end fixed. The initial, intermediate, and final conditions on the deflection function and the velocities of the points of the system are given. An approach to the analytical construction of the boundary control is proposed. The results obtained are illustrated by a specific example. A computational experiment and a comparative analysis were performed.
Keywords: control of oscillations, boundary control, multipoint intermediate states, separation of variables.
@article{INTO_2023_226_a0,
     author = {V. R. Barseghyan and S. V. Solodusha},
     title = {Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {226},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_226_a0/}
}
TY  - JOUR
AU  - V. R. Barseghyan
AU  - S. V. Solodusha
TI  - Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 3
EP  - 15
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_226_a0/
LA  - ru
ID  - INTO_2023_226_a0
ER  - 
%0 Journal Article
%A V. R. Barseghyan
%A S. V. Solodusha
%T Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 3-15
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_226_a0/
%G ru
%F INTO_2023_226_a0
V. R. Barseghyan; S. V. Solodusha. Boundary control of some distributed inhomogeneous oscillatory system with intermediate conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 226 (2023), pp. 3-15. http://geodesic.mathdoc.fr/item/INTO_2023_226_a0/

[1] Barsegyan V. R., “Zadacha optimalnogo upravleniya kolebaniyami struny s nerazdelennymi usloviyami na funktsii sostoyaniya v zadannye promezhutochnye momenty vremeni”, Avtomat. telemekh., 2020, no. 2, 36–47 | Zbl

[2] Barsegyan V. R., “Optimalnoe granichnoe upravlenie smescheniem na dvukh kontsakh pri kolebanii sterzhnya, sostoyaschego iz dvukh uchastkov raznoi plotnosti i uprugosti”, Differ. uravn. protsessy upravl., 2022, no. 2, 41–54 | Zbl

[3] Barsegyan V. R., Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami, Nauka, M., 2016

[4] Barsegyan V. R., Barsegyan T. V., “Kriterii upravlyaemosti lineinykh statsionarnykh sistem peremennoi struktury”, Tr. VIII Mezhdunar. konf. «Problemy dinamiki vzaimodeistviya deformiruemykh sred» (Goris-Stepanakert, Armeniya, 22-26 sentyabrya 2014 g.), 2014, 83–87

[5] Barsegyan V. R., Solodusha S. V., “Zadacha granichnogo upravleniya kolebaniyami struny smescheniem na dvukh kontsakh s zadannymi sostoyaniyami v promezhutochnye momenty vremeni”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 212 (2022), 30–42

[6] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965

[7] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti uprugikh kolebanii posledovatelno soedinennykh ob'ektov s raspredelennymi parametrami”, Tr. in-ta mat. mekh. UrO RAN., 17:1 (2011), 85–92

[8] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti kolebanii seti iz svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Zh. vychisl. mat. mat. fiz., 49:5 (2009), 786–796 | MR | Zbl

[9] Ilin V. A., “Optimizatsiya granichnogo upravleniya kolebaniyami sterzhnya, sostoyaschego iz dvukh raznorodnykh uchastkov”, Dokl. RAN., 440:2 (2011), 159–163 | Zbl

[10] Ilin V. A., “O privedenii v proizvolno zadannoe sostoyanie kolebanii pervonachalno pokoyaschegosya sterzhnya, sostoyaschego iz dvukh raznorodnykh uchastkov”, Dokl. RAN., 435:6 (2010), 732–735 | Zbl

[11] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[12] Kuleshov A. A., “Smeshannye zadachi dlya uravneniya prodolnykh kolebanii neodnorodnogo sterzhnya i uravneniya poperechnykh kolebanii neodnorodnoi struny, sostoyaschikh iz dvukh uchastkov raznoi plotnosti i uprugosti”, Dokl. RAN., 442:5 (2012), 594–597 | Zbl

[13] Lvova N. N., “Optimalnoe upravlenie nekotoroi raspredelennoi neodnorodnoi kolebatelnoi sistemoi”, Avtomat. telemekh., 1973, no. 10, 22–32 | Zbl

[14] Provotorov V. V., “Postroenie granichnykh upravlenii v zadache o gashenii kolebanii sistemy iz $m$ strun”, Vestn. S.-Peterburg. un-ta. Prikl. mat. Inform. Protsessy upravl., 2012, no. 1, 60–69

[15] Rogozhnikov A. M., “Issledovanie smeshannoi zadachi, opisyvayuschei protsess kolebanii sterzhnya, sostoyaschego iz neskolkikh uchastkov s proizvolnymi dlinami”, Dokl. RAN., 444:5 (2012), 488–491 | MR | Zbl

[16] Kholodovskii S. E., Chukhrii P. A., “Zadacha o dvizhenii neogranichennoi kusochno-odnorodnoi struny”, Uch. zap. Zabaikal. gos. un-ta. Fiz. Mat. Tekhn. Tekhnol., 13:4 (2018), 42–50

[17] Barseghyan V. R., “Control problem of string vibrations with inseparable multipoint conditions at intermediate points in time”, Mech. Solid., 54:8 (2019), 1216–1226

[18] Barseghyan V. R., “The problem of optimal control of string vibrations”, Int. Appl. Mech., 56:4 (2020), 471–480 | MR

[19] Barseghian V. R., “String vibration observation problem”, Proc. I Int. Conf. “Control of Oscillations and Chaos” (August 27-29, 1997, St. Petersburg, Russia), 1997, 309–311

[20] Barseghyan V. R., “On the controllability and observability of linear dynamic systems with variable structure”, 2016 Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (June 1-3, 2016, Moscow, Russia), 2016, 1–4

[21] Barseghyan V. R., Solodusha S. V., “Optimal boundary control of string vibrations with given shape of deflection at a certain moment of time”, Proc. Int. Conf. “Mathematical Optimizatopn Theory and Operations Research” MOTOR-2021 (July 5-10, 2021, Irkutsk, Russia), 2021, 299–313 | MR | Zbl

[22] Barseghyan V. R., Solodusha S. V., “On one problem in optimal boundary control for string vibrations with a given velocity of points at an intermediate moment of time”, Proc. Int. Russian Automation Conference “RusAutoCon” (September 5-11, 2021, Sochi, Russia), IEEE, 2021, 343–349 | MR

[23] Ben Amara J., Beldi E., “Boundary controllability of two vibrating strings connected by a point mass with variable coefficients”, SIAM J. Control Optim., 57:5 (2019), 3360–3387 | MR | Zbl

[24] Mercier D., Regnier V., “Boundary controllability of a chain of serially connected Euler–Bernoulli beams with interior masses”, Collect. Math., 60:3 (2009), 307–334 | MR | Zbl