On the local extension of the group of parallel translations of four-dimensional space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 87-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the search for all locally boundedly exactly doubly transitive extensions of the group of parallel translations of a four-dimensional space is reduced to the calculation of the Lie algebras of locally boundedly exactly doubly transitive extensions of the group of parallel translations. Some locally boundedly exactly doubly transitive transformation Lie groups with decomposable Lie algebras are found.
Mots-clés : transitive transformation group, Jordan form.
Keywords: group of parallel translations, Lie algebra
@article{INTO_2023_225_a7,
     author = {V. A. Kyrov},
     title = {On the local extension of the group of parallel translations of four-dimensional space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {87--107},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a7/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - On the local extension of the group of parallel translations of four-dimensional space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 87
EP  - 107
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a7/
LA  - ru
ID  - INTO_2023_225_a7
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T On the local extension of the group of parallel translations of four-dimensional space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 87-107
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a7/
%G ru
%F INTO_2023_225_a7
V. A. Kyrov. On the local extension of the group of parallel translations of four-dimensional space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 87-107. http://geodesic.mathdoc.fr/item/INTO_2023_225_a7/

[1] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980

[2] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2010 | MR

[3] Gorbatsevich V. V., “O rasshirenii tranzitivnykh deistvii grupp Li”, Izv. RAN. Ser. mat., 81:6 (2017), 86–99 | DOI | MR | Zbl

[4] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR

[5] Kyrov V. A., “K voprosu o lokalnom rasshirenii gruppy parallelnykh perenosov trekhmernogo prostranstva”, Vladikavkaz. mat. zh., 23:1 (2021), 32–42 | DOI | MR | Zbl

[6] Kyrov V. A., “Kratno tranzitivnaya gruppa Li preobrazovanii kak fizicheskaya struktura”, Mat. tr., 24:2 (2021), 81–84

[7] Kyrov V. A., “Lokalnoe rasshirenie gruppy parallelnykh perenosov ploskosti do lokalno dvazhdy tranzitivnoi gruppy Li preobrazovanii etoi zhe ploskosti”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 204 (2022), 85–96 | DOI

[8] Kyrov V. A., “O lokalnom rasshirenii gruppy parallelnykh perenosov v trekhmernom prostranstve”, Vestn. Udmurt. un-ta. Mat. Mekh. Kompyut. nauki., 32:1 (2022), 62–80 | MR | Zbl

[9] Kyrov V. A., Mikhailichenko G. G., “Vlozhenie additivnoi dvumetricheskoi fenomenologicheski simmetrichnoi geometrii dvukh mnozhestv ranga $(2,2)$ v dvumetricheskie fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(3,2)$”, Vestn. Udmurt. un-ta. Mat. Mekh. Kompyut. nauki., 28:3, 305–327 | MR | Zbl

[10] Mikhailichenko G. G., Gruppovaya simmetriya fizicheskikh ctruktur, Barnaul, 2003

[11] Mikhailichenko G. G., Muradov R. M., Fizicheskie struktury kak geometrii dvukh mnozhestv, Gorno-Altaisk, 2008

[12] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR