Extreme paths on graphs with simultaneously varying arc durations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 69-72
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we propose an algorithm for finding the fastest path on a graph with two weights on each arc, namely, the times required to pass the arc before the beginning of rush hour and during rush hours, if the time of the beginning of rush hours is also indicated. The algorithm proposed can be considered a modification of the classical E. Dijkstra algorithm.
Keywords:
weighted graph, arc weight, shortest time path, Dijkstra's algorithm, rush hour.
@article{INTO_2023_225_a5,
author = {I. M. Erusalimskyi and M. I. Osipov and V. A. Skorokhodov},
title = {Extreme paths on graphs with simultaneously varying arc durations},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {69--72},
publisher = {mathdoc},
volume = {225},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a5/}
}
TY - JOUR AU - I. M. Erusalimskyi AU - M. I. Osipov AU - V. A. Skorokhodov TI - Extreme paths on graphs with simultaneously varying arc durations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 69 EP - 72 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_225_a5/ LA - ru ID - INTO_2023_225_a5 ER -
%0 Journal Article %A I. M. Erusalimskyi %A M. I. Osipov %A V. A. Skorokhodov %T Extreme paths on graphs with simultaneously varying arc durations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 69-72 %V 225 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_225_a5/ %G ru %F INTO_2023_225_a5
I. M. Erusalimskyi; M. I. Osipov; V. A. Skorokhodov. Extreme paths on graphs with simultaneously varying arc durations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 69-72. http://geodesic.mathdoc.fr/item/INTO_2023_225_a5/