Stability criteria for systems of ordinary differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 28-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present criteria of stability in the Lyapunov sense for systems of ordinary differential equations based on transformations of difference schemes. The purpose of the transformations is to obtain the dependence of the magnitude of the perturbation of the solution at an arbitrary point in time on the perturbation of the initial data.
Keywords: Lyapunov stability, computer analysis of stability, numerical simulation of stability.
@article{INTO_2023_225_a2,
     author = {S. G. Bulanov},
     title = {Stability criteria for systems of ordinary differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {28--37},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a2/}
}
TY  - JOUR
AU  - S. G. Bulanov
TI  - Stability criteria for systems of ordinary differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 28
EP  - 37
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a2/
LA  - ru
ID  - INTO_2023_225_a2
ER  - 
%0 Journal Article
%A S. G. Bulanov
%T Stability criteria for systems of ordinary differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 28-37
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a2/
%G ru
%F INTO_2023_225_a2
S. G. Bulanov. Stability criteria for systems of ordinary differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 28-37. http://geodesic.mathdoc.fr/item/INTO_2023_225_a2/

[1] Bulanov S. G., “Analiz ustoichivosti sistem lineinykh differentsialnykh uravnenii na osnove preobrazovaniya raznostnykh skhem”, Mekhatronika, avtomatizatsiya, upravlenie., 20:9 (2019), 542–549

[2] Bulanov S. G., Dzhanunts G. A., “Programmnyi analiz ustoichivosti sistem obyknovennykh differentsialnykh uravnenii na osnove multiplikativnykh preobrazovanii raznostnykh skhem i kusochno-polinomialnykh priblizhenii resheniya”, Promyshlennye ASU i kontrollery., 2015, no. 2, 10–20

[3] Kolesnikov A. A., Prikladnaya sinergetika: osnovy sistemnogo sinteza, Taganrog, 2007

[4] Lyapina A. A., Matematicheskoe modelirovanie i otsenka nelineinoi dinamiki sostoyaniya zagryazneniya ekosistemy vodnogo ob'ekta /, Dis. na soisk. uch. step. kand. tekhn. nauk., Penza, Penzenskii gos. un-t, 2014

[5] Romm Ya. E., Bulanov S. G., “Chislennoe modelirovanie ustoichivosti po Lyapunovu”, Sovr. nauk. tekhnol., 2021, no. 7, 42–60

[6] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999 | MR

[7] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964 | MR

[8] Bulanov S. G., “Computer analysis of differential systems stability based on linearization and matrix multiplicative criteria”, J. Phys. Conf. Ser., 2021, 012101 | DOI