Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2023_225_a12, author = {B. N. Khabibullin and E. G. Kudasheva and A. E. Salimova}, title = {Completeness criteria of an exponential system in geometric terms of breadth in the direction}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {150--159}, publisher = {mathdoc}, volume = {225}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a12/} }
TY - JOUR AU - B. N. Khabibullin AU - E. G. Kudasheva AU - A. E. Salimova TI - Completeness criteria of an exponential system in geometric terms of breadth in the direction JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2023 SP - 150 EP - 159 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2023_225_a12/ LA - ru ID - INTO_2023_225_a12 ER -
%0 Journal Article %A B. N. Khabibullin %A E. G. Kudasheva %A A. E. Salimova %T Completeness criteria of an exponential system in geometric terms of breadth in the direction %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2023 %P 150-159 %V 225 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2023_225_a12/ %G ru %F INTO_2023_225_a12
B. N. Khabibullin; E. G. Kudasheva; A. E. Salimova. Completeness criteria of an exponential system in geometric terms of breadth in the direction. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 150-159. http://geodesic.mathdoc.fr/item/INTO_2023_225_a12/