On an exact estimate of the number of real invariant lines of polynomial vector fields of degree $n$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 123-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that a polynomial vector field of degree $n$ that has two invariant sets, each of which consists of ${n-1}$ pairwise real invariant straight lines, has at most ${2n+4}$ invariant straight lines, where $n$ is odd and $n\geq3$.
Keywords: polynomial vector field, invariant straight line, rectangle, golden ratio.
Mots-clés : invariant set, nodal point
@article{INTO_2023_225_a10,
     author = {A. D. Ushkho and V. B. Tlyachev and D. S. Ushkho},
     title = {On an exact estimate of the number of real invariant lines of polynomial vector fields of degree $n$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {123--133},
     publisher = {mathdoc},
     volume = {225},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_225_a10/}
}
TY  - JOUR
AU  - A. D. Ushkho
AU  - V. B. Tlyachev
AU  - D. S. Ushkho
TI  - On an exact estimate of the number of real invariant lines of polynomial vector fields of degree $n$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 123
EP  - 133
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_225_a10/
LA  - ru
ID  - INTO_2023_225_a10
ER  - 
%0 Journal Article
%A A. D. Ushkho
%A V. B. Tlyachev
%A D. S. Ushkho
%T On an exact estimate of the number of real invariant lines of polynomial vector fields of degree $n$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 123-133
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_225_a10/
%G ru
%F INTO_2023_225_a10
A. D. Ushkho; V. B. Tlyachev; D. S. Ushkho. On an exact estimate of the number of real invariant lines of polynomial vector fields of degree $n$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 225 (2023), pp. 123-133. http://geodesic.mathdoc.fr/item/INTO_2023_225_a10/

[1] Lyubimova R. A., “Ob odnom differentsialnom uravnenii s integralnymi pryamymi”, Differentsialnye i integralnye uravneniya. Vyp. 1, Izd-vo Gorkov. un-ta, Gorkii, 1977, 19–22

[2] Uoker R., Algebraicheskie krivye, IL, M., 1952

[3] Artes I., Grünbaum B., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pac. J. Math., 184:2 (1998), 207–230 | DOI | MR | Zbl

[4] Bujac C., Llibre J., Vulpe N., “First integrals and phase portraits of planar polynomial differential cubic systems with the maximum number of invariant straight lines”, Qual. Th. Dynam. Syst., 15:2 (2016), 327–-348 | DOI | MR | Zbl