Methods for improving the efficiency of the positional minimum principle in optimal control problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 54-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The positional minimum principle is a necessary condition of global optimality, which strengthen the Pontryagin maximum principle and various extremal conditions for smooth and nonsmooth problems. It is based on iterations of the positional descent over the functional related to extremal strategies with respect to a solution of the corresponding Hamilton–Jacobi inequality. We discuss the main methods that allow one to increase the efficiency of positional descent iterations for uncertain extreme strategies and «stuck» on clearly nonoptimal processes. The positional descent from the sliding mode was examined in detail, i.e., from an admissible process of the convex problem with generalized controls, which are regular probability measures. Based on these ideas, we obtain the positional minimum principle for sliding modes.
Keywords: maximum principle, extremal, sliding mode.
Mots-clés : positional descent
@article{INTO_2023_224_a6,
     author = {V. A. Dykhta},
     title = {Methods for improving the efficiency of the positional minimum principle in optimal control problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {54--64},
     publisher = {mathdoc},
     volume = {224},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2023_224_a6/}
}
TY  - JOUR
AU  - V. A. Dykhta
TI  - Methods for improving the efficiency of the positional minimum principle in optimal control problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2023
SP  - 54
EP  - 64
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2023_224_a6/
LA  - ru
ID  - INTO_2023_224_a6
ER  - 
%0 Journal Article
%A V. A. Dykhta
%T Methods for improving the efficiency of the positional minimum principle in optimal control problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2023
%P 54-64
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2023_224_a6/
%G ru
%F INTO_2023_224_a6
V. A. Dykhta. Methods for improving the efficiency of the positional minimum principle in optimal control problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 224 (2023), pp. 54-64. http://geodesic.mathdoc.fr/item/INTO_2023_224_a6/

[10] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973

[11] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbilis. un-ta, Tbilisi, 1977 | MR

[12] Dykhta V. A., “Kvadratichnye usloviya minimuma na vypuklom mnozhestve i metod skolzyaschikh rezhimov v zadache optimalnogo upravleniya”, Metody rasshireniya zadach teorii upravleniya na osnove printsipa rasshireniya, Nauka, Novosibirsk, 1990 | Zbl

[13] Dykhta V. A., “Dvoistvennye usloviya optimalnosti s s pozitsionnymi upravleniyami spuska v zadachakh, kvadratichnykh po sostoyaniyu”, Tr. Mezhdunar. konf. «Dinamika sistem i protsessy upravleniya–2014», posv. 90-letiyu so dnya rozhd. akad. N. N. Krasovskogo (Ekaterinburg, 15-20 sentyabrya 2014 g.), Ekaterinburg, 2011, 171–178

[14] Dykhta V. A., “Variatsionnye neobkhodimye usloviya optimalnosti s pozitsionnymi upravleniyami spuska v zadachakh optimalnogo upravleniya”, Dokl. RAN., 462:6 (2015), 653–656 | DOI | Zbl

[15] Dykhta V. A., “Pozitsionnye usileniya printsipa maksimuma i dostatochnye usloviya optimalnosti”, Tr. In-ta mat. mekh. UrO RAN., 21:2 (2015), 73–86

[16] Dykhta V. A., Samsonyuk O. N., Neravenstva Gamiltona—Yakobi i variatsionnye usloviya optimalnosti, Izd-vo IGU, Irkutsk, 2015

[17] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Fizmatlit, M., 1974 | MR

[18] Srochko V. A., “Mnogotochechnye usloviya optimalnosti dlya osobykh upravlenii”, Chislennye metody analiza, Izd-vo SEI SO RAN, Irkutsk, 1976, 43–50

[19] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t kompyut. issl., M.-Izhevsk, 2003

[20] Borwein J. M., Zhu Q. J., Techniques of Variational Analysis, Springer, New York, 2005 | MR | Zbl

[21] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., “Qualitative properties of trajectories of control systems: A survey”, J. Dynam. Control Syst., 1:1 (1995), 1–48 | DOI | MR | Zbl

[22] Dykhta V. A., “On variational necessary optimality conditions with descent feedback controls strengthening maximum principle”, Differential Equations and Optimal Control, Proc. Int. Conf. Dedicated to the Centenary of the Birth of Academician E. F. Mishchenko (Moscow, June 7-9, 2022), Steklov Mathematical Institute RAS, Moscow, 2022, 38–42 | MR

[23] Kaśkosz B., “Extremality, controllability, and abundant subsets of generalized control systems”, J. Optim. Theory Appl., 101:1 (1999), 73–108 | DOI | MR | Zbl

[24] Warga J. A., “A second order condition that strengthens Pontryagin's maximum principle”, J. Differ. Equations., 28:2 (1978), 284–307 | DOI | MR | Zbl